
Yilong Zhang, Nan Xiao, Keaven Anderson,
Yalin Zhu

R for Clinical Study Reports and
Submission

Springer Nature

R for Clinical Study Reports and Submission

© Placeholder Name, Inc.

ISBN-1234567891234

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et elementum
libero. In hac habitasse platea dictumst. Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere cubilia Curae; Donec sed odio dui.
Nullam quis risus eget urna mollis ornare vel eu leo. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Curabitur blandit tempus porttitor. Integer posuere erat a ante venenatis
dapibus posuere velit aliquet.

Placeholder for dedication text

Table of contents

Welcome . 5

Preface . 7
Folder structure . 7
In this book . 8
Philosophy . 9
Authors and contributors . 9

Part I Delivering TLFs in CSR

1 Overview . 13
1.1 Background . 13
1.2 Datasets . 14
1.3 Tools . 15

1.3.1 tidyverse . 15
1.3.2 r2rtf . 16

2 Disposition . 29

3 Analysis population . 37
3.1 Helper functions . 39
3.2 Analysis code . 41

4 Baseline characteristics . 45

5 Efficacy table . 51
5.1 Analysis dataset . 52
5.2 Helper functions . 53
5.3 Summary of observed data . 54
5.4 Missing data imputation . 56
5.5 ANCOVA model . 56

1

2 Table of contents

5.6 Reporting . 58

6 Efficacy figure . 65
6.1 Analysis dataset . 65
6.2 Create Kaplan-Meier curve . 66

7 AE summary . 69

8 Specific AE . 77

9 Assemble TLFs . 87
9.1 Combine RTF Source Code . 89
9.2 Using Toggle Fields . 89

Part II Clinical trial project

10 Overview . 95

11 Project folder . 97
11.1 Consistency . 98
11.2 Reproducibility . 100

11.2.1 R version . 100
11.2.2 R package version . 101

11.3 Automation . 103
11.4 Compliance . 104

12 Project management . 105
12.1 Setting up for success . 105

12.1.1 Work as a team . 105
12.1.2 Design clean code architecture . 105
12.1.3 Set capability boundaries . 106
12.1.4 Contribute to the community . 106

12.2 The SDLC . 106
12.3 Planning . 107
12.4 Development . 108
12.5 Validation . 109
12.6 Operation . 110

Part III eCTD submission

13 Overview . 113

14 Submission package . 115
14.1 Prerequisites . 115
14.2 The whole game . 116

14.2.1 datasets . 116
14.2.2 programs . 117

Table of contents 3

14.2.3 Notes . 117
14.3 Practical considerations for R package submissions 117

14.3.1 Source location . 117
14.3.2 Dependency locations . 118
14.3.3 R version . 118
14.3.4 Package repo version . 118
14.3.5 System environments . 118

14.4 Prepare R packages for submission . 119
14.4.1 Pack . 119
14.4.2 Verify . 121
14.4.3 Unpack . 121

14.5 Prepare analysis programs for submission 121
14.6 Update ADRG . 123
14.7 Update ARM . 125

15 Running environment . 127
15.1 Prerequisites . 127
15.2 Practical considerations . 128
15.3 Create canonical environments . 128
15.4 Create tailored environments . 129
15.5 Update ADRG . 129
15.6 RStudio addin . 131

References . 133

Welcome

Welcome to R for Clinical Study Reports and Submission. Clinical study
reports (CSR) are crucial components in clinical trial development. A CSR
is an “integrated” full scientific report of an individual clinical trials.

The ICH E3: Structure and Content of Clinical Study Reports (https://
database.ich.org/sites/default/files/E3_Guideline.pdf) offers comprehensive
instructions to sponsors on the creation of a CSR. This book is a clear and
straightforward guide on using R to streamline the process of preparing CSRs.
Additionally, it provides detailed guidance on the submission process to regu-
latory agencies. Whether you are a beginner or an experienced R programmer,
this book is an indispensable asset in your clinical reporting toolkit.

This is a work-in-progress draft.

5

https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://database.ich.org/sites/default/files/E3_Guideline.pdf

Preface

Folder structure

In the development of clinical trials, it is necessary to create and manage
source code for generating and delivering Study Data Tabulation Model
(SDTM), Analysis Dataset Model (ADaM) datasets, as well as tables, list-
ings, and figures (TLFs). This is particularly evident in Phase 3 trials, where
numerous TLFs are needed for submission. To effectively handle the large
number of programs involved in such endeavors, it is essential to establish
a consistent and well-defined folder structure for managing the analysis and
reporting (A&R) project of a clinical trial.

To streamline the organization of source code and documentation for a clini-
cal trial A&R project, we suggest employing the R package folder structure.
This folder structure is extensively utilized within the R community and is
well-defined, often found in repositories like CRAN. By adopting this struc-
ture, you can benefit from a standardized and widely accepted framework for
managing your A&R-related materials in an efficient and accessible manner.

Using the R package folder structure provides a consistent approach that
simplifies communication among developers, both within and across organi-
zations.

• For newcomers to R development, creating R packages is an essential step
when sharing their work with others. The R community offers a widely
adopted folder structure accompanied by excellent tutorials and free tools.

• For an experienced R developer, there is a minimal learning curve.
• For an organization, adopting the R package folder structure simplifies the

development of processes, tools, templates, and training. It enables the use
of a unified folder structure for building and maintaining standardized tool
and analysis projects.

7

8 Preface

The workflow around an R package can also improve the traceability and
reproducibility of an analysis project [Marwick et al., 2018].

We will revisit the folder structure topic when discussing project management
for a clinical trial project.

Additionally, the R package folder structure is also recommended for devel-
oping Shiny apps, as discussed in Chapter 20 of the Mastering Shiny (https:
//mastering-shiny.org/scaling-packaging.html) book and the Engineering
Production-Grade Shiny Apps (https://engineering-shiny.org/golem.html)
book.

In this book

This book is designed for intermediate-level readers who possess knowledge in
both R programming and clinical development. Each part of the book makes
certain assumptions about the readers’ background:

• Part 1, titled “Delivering TLFs in CSR”, provides general information
and examples on creating tables, listings, and figures. It assumes that
readers are individual contributors to a clinical project with prior expe-
rience in R programming. Familiarity with data manipulation in R is
expected. Some recommended references for this part include Hands-On
Programming with R (https://rstudio-education.github.io/hopr/), R for
Data Science (https://r4ds.had.co.nz/), and Data Manipulation with R
(https://doi.org/10.1007/978-0-387-74731-6).

• Part 2, titled “Clinical trial project”, provides general information and ex-
amples on managing a clinical trial A&R project. It assumes that readers
are project leads who have experience in R package development. Recom-
mended references for this part include R Packages (https://r-pkgs.org/)
and the tidyverse style guide (https://style.tidyverse.org/).

• Part 3, titled “eCTD submission package”, provides general information
on preparing submission packages related to the CSR in the electronic
Common Technical Document (eCTD) format. It assumes that readers
are project leads of clinical projects who possess experience in R package
development and submission.

https://mastering-shiny.org/scaling-packaging.html
https://mastering-shiny.org/scaling-packaging.html
https://engineering-shiny.org/golem.html
https://rstudio-education.github.io/hopr/
https://r4ds.had.co.nz/
https://doi.org/10.1007/978-0-387-74731-6
https://r-pkgs.org/
https://style.tidyverse.org/

Authors and contributors 9

Philosophy

We share the same philosophy described in the introduction of the R Pack-
ages (https://r-pkgs.org/introduction.html#sec-intro-phil) book [Wickham
and Bryan, 2023], which we quote below:

• “Anything that can be automated, should be automated.”
• “Do as little as possible by hand. Do as much as possible with functions.”

Authors and contributors

This document is a collaborative effort maintained by a community. As you
read through it, you also have the opportunity to contribute and enhance its
quality. Your input and involvement play a vital role in shaping the excellence
of this document.

• Authors: made significant contributions to at least one chapter, constitut-
ing the majority of the content.

Yilong Zhang (https://elong0527.github.io/), Nan Xiao (https://nanx.
me/), Keaven Anderson (https://keaven.github.io/), Yalin Zhu (https:
//yalin.netlify.app/)

• Contributors: contributed at least one commit to the source code (https:
//github.com/elong0527/r4csr).

We are grateful for all the improvements brought by these contribu-
tors (in chronological order): Yujie Zhao (@LittleBeannie), Aiming Yang,
Steven Haesendonckx (@SHAESEN2), Howard Baek (@howardbaek), Xi-
aoxia Han (@echohan), Jie Wang (@ifendo).

https://r-pkgs.org/introduction.html#sec-intro-phil
https://elong0527.github.io/
https://nanx.me/
https://nanx.me/
https://keaven.github.io/
https://yalin.netlify.app/
https://yalin.netlify.app/
https://github.com/elong0527/r4csr
https://github.com/elong0527/r4csr

Part I
Delivering TLFs in CSR

Chapter 1

Overview

1.1 Background

Submitting clinical trial results to regulatory agencies is a crucial aspect of
clinical development. The Electronic Common Technical Document (eCTD)
(https://en.wikipedia.org/wiki/Electronic_common_technical_document)
has emerged as the global standard format for regulatory submissions. For
instance, the United States Food and Drug Administration (US FDA) man-
dates the use of eCTD (https://www.fda.gov/drugs/electronic-regulatory-
submission-and-review/electronic-common-technical-document-ectd) for
new drug applications and biologics license applications.

A CSR provides comprehensive information about the methods and
results of an individual clinical study. To support the statistical analy-
sis, numerous tables, listings, and figures are included within the main
text and appendices. As part of the CDISC pilot project, an example
CSR (https://github.com/cdisc-org/sdtm-adam-pilot-project/blob/master/
updated-pilot-submission-package/900172/m5/53-clin-stud-rep/535-rep-
effic-safety-stud/5351-stud-rep-contr/cdiscpilot01/cdiscpilot01.pdf) is also
available for reference. If you seek additional examples of CSR, you can visit
the clinical data website of the European Medicines Agency (EMA) clinical
data website (https://clinicaldata.ema.europa.eu/web/cdp/home).

The creation of CSR is a collaborative effort that involves various profession-
als such as clinicians, medical writers, statisticians, statistical programmers.
In this context, we will focus on the specific deliverables provided by statis-
ticians and statistical programmers.

Within an organization, these professionals typically collaborate to define, de-
velop, validate, and deliver the necessary tables, listings, and figures (TLFs)
for a CSR. These TLFs serve to summarize the efficacy and/or safety of the
pharmaceutical product under study. In the pharmaceutical industry, Mi-

13

https://en.wikipedia.org/wiki/Electronic_common_technical_document
https://www.fda.gov/drugs/electronic-regulatory-submission-and-review/electronic-common-technical-document-ectd
https://www.fda.gov/drugs/electronic-regulatory-submission-and-review/electronic-common-technical-document-ectd
https://github.com/cdisc-org/sdtm-adam-pilot-project/blob/master/updated-pilot-submission-package/900172/m5/53-clin-stud-rep/535-rep-effic-safety-stud/5351-stud-rep-contr/cdiscpilot01/cdiscpilot01.pdf
https://github.com/cdisc-org/sdtm-adam-pilot-project/blob/master/updated-pilot-submission-package/900172/m5/53-clin-stud-rep/535-rep-effic-safety-stud/5351-stud-rep-contr/cdiscpilot01/cdiscpilot01.pdf
https://github.com/cdisc-org/sdtm-adam-pilot-project/blob/master/updated-pilot-submission-package/900172/m5/53-clin-stud-rep/535-rep-effic-safety-stud/5351-stud-rep-contr/cdiscpilot01/cdiscpilot01.pdf
https://clinicaldata.ema.europa.eu/web/cdp/home

14 1 Overview

crosoft Word is widely utilized for CSR preparation. As a result, the deliver-
ables from statisticians and statistical programmers are commonly provided
in formats such as .rtf, .doc, .docx to align with industry standards and
requirements.

Our focus is to demonstrate the process of generating TLFs in RTF format,
which is commonly employed in CSRs. The examples provided in this chapter
adhere to the ICH E3 guidance (https://database.ich.org/sites/default/files/
E3_Guideline.pdf) and the FDA’s PDF Specifications (https://www.fda.gov/
media/76797/download).

Note

FDA’s PDF specification is a general reference. Each organization can
define more specific TLF format requirements that can be different from
the examples in this book. The FDA’s PDF specification serves as a
general reference for formatting requirements. Each organization has
the flexibility to define its own specific requirements for TLFs. These
specific format requirements may differ from the examples provided in
this book. It is advisable to consult and adhere to the guidelines and
specifications set by your respective organization when preparing TLFs
for submission.

By following the ICH E3 guidance, most of TLFs in a CSR are located at

• Section 10: Study participants
• Section 11: Efficacy evaluation
• Section 12: Safety evaluation
• Section 14: Tables, listings, and figures referrals but not included in the

text
• Section 16: Appendices

1.2 Datasets

The dataset structure follows CDISC Analysis Data Model (ADaM) (https:
//www.cdisc.org/standards/foundational/adam).

In this project, we used publicly available CDISC pilot study data, which is
accessible through the CDISC GitHub repository (https://github.com/cdisc-
org/sdtm-adam-pilot-project/tree/master/updated-pilot-submission-
package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets).

To streamline the process, we have downloaded all the datasets from the
repository and stored them in the data-adam/ folder (https://github.com/
elong0527/r4csr/tree/main/data-adam) within this project. Additionally, we

https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://www.fda.gov/media/76797/download
https://www.fda.gov/media/76797/download
https://www.cdisc.org/standards/foundational/adam
https://www.cdisc.org/standards/foundational/adam
https://github.com/cdisc-org/sdtm-adam-pilot-project/tree/master/updated-pilot-submission-package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets
https://github.com/cdisc-org/sdtm-adam-pilot-project/tree/master/updated-pilot-submission-package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets
https://github.com/cdisc-org/sdtm-adam-pilot-project/tree/master/updated-pilot-submission-package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets
https://github.com/elong0527/r4csr/tree/main/data-adam
https://github.com/elong0527/r4csr/tree/main/data-adam

1.3 Tools 15

converted these datasets from the .xpt format to the .sas7bdat format
for ease of use and compatibility. The dataset structure adheres to the
CDISC Analysis Data Model (ADaM) (https://www.cdisc.org/standards/
foundational/adam) standard.

1.3 Tools

To exemplify the generation of TLFs in RTF format, we rely on the function-
ality provided by two R packages:

• tidyverse (https://www.tidyverse.org/): preparation of datasets in a for-
mat suitable for reporting purposes. The tidyverse package offers a com-
prehensive suite of tools and functions for data manipulation and transfor-
mation, ensuring that the data is structured appropriately.

• r2rtf (https://merck.github.io/r2rtf/): creation RTF files. The r2rtf pack-
age offers functions specifically designed for generating RTF files, allowing
us to produce TLFs in the desired format.

Note

There are indeed several other R packages available that can assist
in creating TLFs in ASCII, RTF, and Word formats such as rtables,
huxtable, pharmaRTF, gt, officer, and flextable. However, in this par-
ticular context, we will concentrate on demonstrating the concept using
the r2rtf package. It is highly recommended for readers to explore and
experiment with various R packages to identify the most suitable tools
that align with their specific needs and objectives.

1.3.1 tidyverse

The tidyverse is a comprehensive collection of R packages that aim to sim-
plify the workflow of manipulating, visualizing, and analyzing data in R.
These packages adhere to the principles outlined in the the tidy tools mani-
festo (https://tidyverse.tidyverse.org/articles/manifesto.html) and offer user-
friendly interfaces for interactive data analysis.

The creators of the tidyverse, Posit, have provided exceptional cheatsheets
(https://posit.co/resources/cheatsheets/) and tutorials (https://github.com/
rstudio-education/remaster-the-tidyverse) that serve as valuable resources
for learning and mastering the functionalities of these packages.

https://www.cdisc.org/standards/foundational/adam
https://www.cdisc.org/standards/foundational/adam
https://www.tidyverse.org/
https://merck.github.io/r2rtf/
https://tidyverse.tidyverse.org/articles/manifesto.html
https://posit.co/resources/cheatsheets/
https://github.com/rstudio-education/remaster-the-tidyverse
https://github.com/rstudio-education/remaster-the-tidyverse

16 1 Overview

Furthermore, there are several books available that serve as introductions to
the tidyverse. For example:

• The tidyverse cookbook (https://rstudio-education.github.io/tidyverse-
cookbook/)

• R for Data Science (https://r4ds.had.co.nz/)

Note

In this book, we assume that the reader already has experience in using
the tidyverse. This prior knowledge and familiarity with the tidyverse
tools enable a more efficient and focused exploration of the concepts
presented throughout the book.

1.3.2 r2rtf

r2rtf is an R package specifically designed to create production-ready tables
and figures in RTF format.

• Provide simple “verb” functions that correspond to each component of a
table, to help you translate a data frame to a table in an RTF file.

• Enable pipes (|>).
• Focus on the table format only. Data manipulation and analysis tasks

can be handled by other R packages like the tidyverse.

Before generating an RTF table using r2rtf, there are a few steps to follow:

• Determine the desired layout of the table.
• Break down the layout into smaller tasks, which can be programmed.
• Execute the program to generate the table.

We provide a brief introduction of r2rtf and show how to transfer data frames
into table, listing, and figures (TLFs).

We provide a concise introduction to r2rtf and demonstrate how to convert
data frames into TLFs. For more comprehensive examples and additional
features, we encourage readers to explore the r2rtf package website (https:
//merck.github.io/r2rtf/articles/index.html).

To illustrate the basic usage of the r2rtf package, we will work with the
“r2rtf_adae” dataset, available within the r2rtf package. This dataset con-
tains information on adverse events (AEs) from a clinical trial, which will
serve as a practical example for generating RTF tables using r2rtf.

To begin, let’s load the required packages:

https://rstudio-education.github.io/tidyverse-cookbook/
https://rstudio-education.github.io/tidyverse-cookbook/
https://r4ds.had.co.nz/
https://merck.github.io/r2rtf/articles/index.html
https://merck.github.io/r2rtf/articles/index.html

1.3 Tools 17

library(tidyverse) # Manipulate data
library(r2rtf) # Reporting in RTF format

In this example, we will focus on three variables from the r2rtf_adae dataset:

• USUBJID: unique subject identifier.
• TRTA: actual treatment group.
• AEDECOD: dictionary-derived derm.

Note

Additional information about these variables can be found on the help
page of the dataset, which can be accessed by using the command
?r2rtf_adae in R.

r2rtf_adae |> select(USUBJID, TRTA, AEDECOD)
#> USUBJID TRTA AEDECOD
#> 1 01-701-1015 Placebo APPLICATION SITE ERYTHEMA
#> 2 01-701-1015 Placebo APPLICATION SITE PRURITUS
#> 3 01-701-1015 Placebo DIARRHOEA
#> 4 01-701-1023 Placebo ERYTHEMA
#> # � 1187 more rows

To manipulate the data and create a data frame containing the necessary
information for the RTF table, we can use the dplyr and tidyr packages
within the tidyverse.
tbl <- r2rtf_adae %>%
count(TRTA, AEDECOD) %>%
pivot_wider(names_from = TRTA, values_from = n, values_fill = 0)

tbl
#> # A tibble: 242 x 4
#> AEDECOD Placebo `Xanomeline High Dose` `Xanomeline Low Dose`
#> <chr> <int> <int> <int>
#> 1 ABDOMINAL PAIN 1 2 3
#> 2 AGITATION 2 1 2
#> 3 ALOPECIA 1 0 0
#> 4 ANXIETY 2 0 4
#> # i 238 more rows

Having prepared the dataset tbl, we can now proceed with constructing
the final RTF table using the r2rtf package. The r2rtf package has various
functions, each designed for a specific type of table layout. Some commonly
used verbs include:

• rtf_page(): RTF page information

18 1 Overview

• rtf_title(): RTF title information
• rtf_colheader(): RTF column header information
• rtf_body(): RTF table body information
• rtf_footnote(): RTF footnote information
• rtf_source(): RTF data source information

Functions provided by the r2rtf package are designed to work seamlessly
with the pipe operator (|>). This allows for a more concise and readable
code structure, enhancing the efficiency of table creation in RTF format. A
full list of functions in the r2rtf package can be found in the package reference
page (https://merck.github.io/r2rtf/reference/index.html).

Here is a minimal example that demonstrates how to combine functions using
pipes to create an RTF table.

• rtf_body() is used to define table body layout.
• rtf_encode() transfers table layout information into RTF syntax.
• write_rtf() save RTF encoding into a file with file extension .rtf.
tbl |>
head() |>
rtf_body() |>
rtf_encode() |>
write_rtf("tlf/intro-ae1.rtf")

https://merck.github.io/r2rtf/reference/index.html

1.3 Tools 19

AEDECOD Placebo Xanomeline High Dose Xanomeline Low Dose

ABDOMINAL PAIN 1 2 3
AGITATION 2 1 2
ALOPECIA 1 0 0
ANXIETY 2 0 4

APPLICATION SITE
DERMATITIS

9 12 15

APPLICATION SITE
ERYTHEMA

3 23 20

In the previous example, we may want to add more column space to the first
column. We can achieve the goal by updating the col_rel_width argument
in the rtf_body() function.

In the example below, the col_rel_width argument expects a vector with
the same length as the number of columns in the table tbl. This vector defines
the relative width of each column within a predetermined total column width.
Here, the relative width is defined as 3:2:2:2 that allow us to allocate more
space to specific columns.

20 1 Overview

Note

Only the ratio of the col_rel_width values is considered. Therefore,
using col_rel_width = c(6, 4, 4, 4) or col_rel_width = c(1.5,
1, 1, 1) would yield equivalent results, as they maintain the same
ratio.

tbl |>
head() |>
rtf_body(col_rel_width = c(3, 2, 2, 2)) |>
rtf_encode() |>
write_rtf("tlf/intro-ae2.rtf")

1.3 Tools 21

AEDECOD Placebo Xanomeline High Dose Xanomeline Low Dose

ABDOMINAL PAIN 1 2 3
AGITATION 2 1 2
ALOPECIA 1 0 0
ANXIETY 2 0 4

APPLICATION SITE DERMATITIS 9 12 15
APPLICATION SITE ERYTHEMA 3 23 20

In the previous example, we encountered a misalignment issue with the col-
umn header. To address this, we can use the rtf_colheader() function to
adjust column header width and provide more informative column headers.

Within the rtf_colheader() function, the colheader argument is used to
specify the content of the column header. The columns are separated us-
ing the | symbol. In the following example, we define the column header
as "Adverse Events | Placebo | Xanomeline High Dose | Xanomeline
Low Dose", representing the four columns in the table:

22 1 Overview

tbl |>
head() |>
rtf_colheader(
colheader = "Adverse Events | Placebo | Xanomeline High Dose | Xanomeline Low Dose",
col_rel_width = c(3, 2, 2, 2)

) |>
rtf_body(col_rel_width = c(3, 2, 2, 2)) |>
rtf_encode() %>%
write_rtf("tlf/intro-ae3.rtf")

1.3 Tools 23

Adverse Events Placebo Xanomeline High Dose Xanomeline Low Dose

ABDOMINAL PAIN 1 2 3
AGITATION 2 1 2
ALOPECIA 1 0 0
ANXIETY 2 0 4

APPLICATION SITE DERMATITIS 9 12 15
APPLICATION SITE ERYTHEMA 3 23 20

In rtf_body() and rtf_colheader(), the text_justification argument
is used to align text within the generated RTF table. The default value is
"c", representing center justification. However, you can customize the text
justification by column using a character vector with a length equal to the
number of displayed columns. Here is a table displaying the possible inputs
for the text_justification argument:

24 1 Overview

type name
l left
c center
r right
d decimal
j justified

Below is an example to make the first column left-aligned and the rest
columns center-aligned.
tbl |>
head() |>
rtf_body(text_justification = c("l", "c", "c", "c")) |>
rtf_encode() |>
write_rtf("tlf/intro-ae5.rtf")

1.3 Tools 25

AEDECOD Placebo Xanomeline High Dose Xanomeline Low Dose

ABDOMINAL PAIN 1 2 3
AGITATION 2 1 2
ALOPECIA 1 0 0
ANXIETY 2 0 4
APPLICATION SITE
DERMATITIS

9 12 15

APPLICATION SITE
ERYTHEMA

3 23 20

The border_left, border_right, border_top, and border_bottom argu-
ments in the rtf_body() and rtf_colheader() functions are used to control
the cell borders in the RTF table. If we want to remove the top border of
"Adverse Events" in the header, we can change the default value "single"
to "" in the border_top argument. Below is an example to demonstrate the
possibility of adding multiple column headers with proper border lines.

26 1 Overview

Note

the r2rtf package supports 26 different border types, each offering
unique border styles. For more details and examples regarding these
border types, you can refer to the r2rtf package website (https://merck.
github.io/r2rtf/articles/rtf-row.html#border-type).

tbl |>
head() |>
rtf_colheader(
colheader = " | Treatment",
col_rel_width = c(3, 6)

) |>
rtf_colheader(
colheader = "Adverse Events | Placebo | Xanomeline High Dose | Xanomeline Low Dose",
border_top = c("", "single", "single", "single"),
col_rel_width = c(3, 2, 2, 2)

) |>
rtf_body(col_rel_width = c(3, 2, 2, 2)) %>%
rtf_encode() |>
write_rtf("tlf/intro-ae7.rtf")

https://merck.github.io/r2rtf/articles/rtf-row.html#border-type
https://merck.github.io/r2rtf/articles/rtf-row.html#border-type

1.3 Tools 27

Treatment

Adverse Events Placebo Xanomeline High Dose Xanomeline Low Dose

ABDOMINAL PAIN 1 2 3
AGITATION 2 1 2
ALOPECIA 1 0 0
ANXIETY 2 0 4

APPLICATION SITE DERMATITIS 9 12 15
APPLICATION SITE ERYTHEMA 3 23 20

The r2rtf R package website (https://merck.github.io/r2rtf/articles/index.
html) provides additional examples that demonstrate how to customize var-
ious aspects of the generated RTF tables. These examples cover topics such
as customizing the title, subtitle, footnote, data source, and handling special
characters within the table content.

In the upcoming chapters of this book, we will introduce and explore these
features as they become relevant to the specific use cases and scenarios dis-
cussed. By following along with the chapters, readers will gradually learn how

https://merck.github.io/r2rtf/articles/index.html
https://merck.github.io/r2rtf/articles/index.html

28 1 Overview

to leverage these features to customize and enhance their RTF tables in real
examples.

Chapter 2

Disposition

Following ICH E3 guidance (https://database.ich.org/sites/default/files/
E3_Guideline.pdf), a summary table needs to be provided to include
all participants who entered the study in Section 10.1, Disposition of
Participants.

The disposition of participants table reports the numbers of participants who
were randomized, and who entered and completed each phase of the study.
In addition, the reasons for all post-randomization discontinuations, grouped
by treatment and by major reason (lost to follow-up, adverse event, poor
compliance, etc.) are reported.
library(haven) # Read SAS data
library(dplyr) # Manipulate data
library(tidyr) # Manipulate data
library(r2rtf) # Reporting in RTF format

In this chapter, we show how to create a typical disposition table.

29

https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://database.ich.org/sites/default/files/E3_Guideline.pdf

30 2 Disposition

Disposition of Participants

Placebo Xanomeline Low Dose Xanomeline High Dose

n (%) n (%) n (%)

Participants in population 86 84 84
Completed 58 67.4 25 29.8 27 32.1
Discontinued 28 32.6 59 70.2 57 67.9
 Adverse Event 8 9.3 44 52.4 40 47.6
 Death 2 2.3 1 1.2 0 0.0
 I/E Not Met 1 1.2 0 0.0 2 2.4
 Lack of Efficacy 3 3.5 0 0.0 1 1.2
 Lost to Follow-up 1 1.2 1 1.2 0 0.0
 Physician Decision 1 1.2 0 0.0 2 2.4
 Protocol Violation 1 1.2 1 1.2 1 1.2
 Sponsor Decision 2 2.3 2 2.4 3 3.6
 Withdrew Consent 9 10.5 10 11.9 8 9.5

The first step is to read in the relevant datasets into R. For a disposition
table, all the required information is saved in a Subject-level Analysis Dataset
(ADSL). This dataset is provided in sas7bdat format, which is a SAS data
format currently used in many clinical trial analysis and reporting. The haven
package is able to read the dataset, while maintaining its attributes (e.g.,
variable labels).

2 Disposition 31

adsl <- read_sas("data-adam/adsl.sas7bdat")

The following variables are used in the preparation of a simplified disposition
of participants table:

• USUBJID: unique subject identifier
• TRT01P: planned treatment
• TRT01PN: planned treatment numeric encoding
• DISCONFL: discontinued from study flag
• DCREASCD: discontinued from study reason coded
adsl %>% select(USUBJID, TRT01P, TRT01PN, DISCONFL, DCREASCD)
#> # A tibble: 254 x 5
#> USUBJID TRT01P TRT01PN DISCONFL DCREASCD
#> <chr> <chr> <dbl> <chr> <chr>
#> 1 01-701-1015 Placebo 0 "" Completed
#> 2 01-701-1023 Placebo 0 "Y" Adverse Event
#> 3 01-701-1028 Xanomeline High Dose 81 "" Completed
#> 4 01-701-1033 Xanomeline Low Dose 54 "Y" Sponsor Decision
#> # i 250 more rows

In the code below, we calculate the number of participants in the analysis
population by treatment arms.
n_rand <- adsl %>%
group_by(TRT01PN) %>%
summarize(n = n()) %>%
pivot_wider(
names_from = TRT01PN,
names_prefix = "n_",
values_from = n

) %>%
mutate(row = "Participants in population")

n_rand
#> # A tibble: 1 x 4
#> n_0 n_54 n_81 row
#> <int> <int> <int> <chr>
#> 1 86 84 84 Participants in population

n_disc <- adsl %>%
group_by(TRT01PN) %>%
summarize(
n = sum(DISCONFL == "Y"),
pct = formatC(n / n() * 100,
digits = 1, format = "f", width = 5

)

32 2 Disposition

) %>%
pivot_wider(
names_from = TRT01PN,
values_from = c(n, pct)

) %>%
mutate(row = "Discontinued")

n_disc
#> # A tibble: 1 x 7
#> n_0 n_54 n_81 pct_0 pct_54 pct_81 row
#> <int> <int> <int> <chr> <chr> <chr> <chr>
#> 1 28 59 57 " 32.6" " 70.2" " 67.9" Discontinued

In the code below, we calculate the number and percentage of participants
who completed/discontinued the study for different reasons by treatment
arms.
n_reason <- adsl %>%
group_by(TRT01PN) %>%
mutate(n_total = n()) %>%
group_by(TRT01PN, DCREASCD) %>%
summarize(
n = n(),
pct = formatC(n / unique(n_total) * 100,
digits = 1, format = "f", width = 5

)
) %>%
pivot_wider(
id_cols = DCREASCD,
names_from = TRT01PN,
values_from = c(n, pct),
values_fill = list(n = 0, pct = " 0.0")

) %>%
rename(row = DCREASCD)

n_reason
#> # A tibble: 10 x 7
#> row n_0 n_54 n_81 pct_0 pct_54 pct_81
#> <chr> <int> <int> <int> <chr> <chr> <chr>
#> 1 Adverse Event 8 44 40 " 9.3" " 52.4" " 47.6"
#> 2 Completed 58 25 27 " 67.4" " 29.8" " 32.1"
#> 3 Death 2 1 0 " 2.3" " 1.2" " 0.0"
#> 4 I/E Not Met 1 0 2 " 1.2" " 0.0" " 2.4"
#> # i 6 more rows

2 Disposition 33

In the code below, we calculate the number and percentage of participants
who complete the study by treatment arms. We split n_reason because we
want to customize the row order of the table.
n_complete <- n_reason %>%
filter(row == "Completed")

n_complete
#> # A tibble: 1 x 7
#> row n_0 n_54 n_81 pct_0 pct_54 pct_81
#> <chr> <int> <int> <int> <chr> <chr> <chr>
#> 1 Completed 58 25 27 " 67.4" " 29.8" " 32.1"

In the code below, we calculate the numbers and percentages of participants
who discontinued the study for different reasons by treatment arms. For dis-
play purpose, paste0(" ", row) is used to add leading spaces to produce
indentation in the final report.
n_reason <- n_reason %>%
filter(row != "Completed") %>%
mutate(row = paste0(" ", row))

n_reason
#> # A tibble: 9 x 7
#> row n_0 n_54 n_81 pct_0 pct_54 pct_81
#> <chr> <int> <int> <int> <chr> <chr> <chr>
#> 1 " Adverse Event" 8 44 40 " 9.3" " 52.4" " 47.6"
#> 2 " Death" 2 1 0 " 2.3" " 1.2" " 0.0"
#> 3 " I/E Not Met" 1 0 2 " 1.2" " 0.0" " 2.4"
#> 4 " Lack of Efficacy" 3 0 1 " 3.5" " 0.0" " 1.2"
#> # i 5 more rows

Now we combine individual rows into one table for reporting purpose.
tbl_disp is used as input for r2rtf to create final report.
tbl_disp <- bind_rows(n_rand, n_complete, n_disc, n_reason) %>%
select(row, ends_with(c("_0", "_54", "_81")))

tbl_disp
#> # A tibble: 12 x 7
#> row n_0 pct_0 n_54 pct_54 n_81 pct_81
#> <chr> <int> <chr> <int> <chr> <int> <chr>
#> 1 "Participants in population" 86 <NA> 84 <NA> 84 <NA>
#> 2 "Completed" 58 " 67.4" 25 " 29.8" 27 " 32.1"
#> 3 "Discontinued" 28 " 32.6" 59 " 70.2" 57 " 67.9"
#> 4 " Adverse Event" 8 " 9.3" 44 " 52.4" 40 " 47.6"
#> # i 8 more rows

34 2 Disposition

In the below code, formatting of the final table is defined. Items that were
not discussed in the previous sections, are highlighted below.

The rtf_title defines table title. We can provide a vector for the title ar-
gument. Each value is a separate line. The format can also be controlled by
providing a vector input in text format.
tbl_disp %>%
Table title
rtf_title("Disposition of Participants") %>%
First row of column header
rtf_colheader(" | Placebo | Xanomeline Low Dose| Xanomeline High Dose",
col_rel_width = c(3, rep(2, 3))

) %>%
Second row of column header
rtf_colheader(" | n | (%) | n | (%) | n | (%)",
col_rel_width = c(3, rep(c(0.7, 1.3), 3)),
border_top = c("", rep("single", 6)),
border_left = c("single", rep(c("single", ""), 3))

) %>%
Table body
rtf_body(
col_rel_width = c(3, rep(c(0.7, 1.3), 3)),
text_justification = c("l", rep("c", 6)),
border_left = c("single", rep(c("single", ""), 3))

) %>%
Encoding RTF syntax
rtf_encode() %>%
Save to a file
write_rtf("tlf/tbl_disp.rtf")

2 Disposition 35

Disposition of Participants

Placebo Xanomeline Low Dose Xanomeline High Dose

n (%) n (%) n (%)

Participants in population 86 84 84
Completed 58 67.4 25 29.8 27 32.1
Discontinued 28 32.6 59 70.2 57 67.9
 Adverse Event 8 9.3 44 52.4 40 47.6
 Death 2 2.3 1 1.2 0 0.0
 I/E Not Met 1 1.2 0 0.0 2 2.4
 Lack of Efficacy 3 3.5 0 0.0 1 1.2
 Lost to Follow-up 1 1.2 1 1.2 0 0.0
 Physician Decision 1 1.2 0 0.0 2 2.4
 Protocol Violation 1 1.2 1 1.2 1 1.2
 Sponsor Decision 2 2.3 2 2.4 3 3.6
 Withdrew Consent 9 10.5 10 11.9 8 9.5

The procedure to generate a disposition table can be summarized as follows:

• Step 1: Read subject level data (i.e., adsl) into R.
• Step 2: Count participants in the analysis population and name the dataset

n_rand.
• Step 3: Calculate the number and percentage of participants who discon-

tinued the study by treatment arm, and name the dataset n_disc.

36 2 Disposition

• Step 4: Calculate the numbers and percentages of participants who dis-
continued the study for different reasons by treatment arm, and name the
dataset n_reason.

• Step 5: Calculate the number and percentage of participants who com-
pleted the study by treatment arm, and name the dataset n_complete.

• Step 6: Bind n_rand, n_disc, n_reason, and n_complete by row.
• Step 7: Write the final table to RTF

Chapter 3

Analysis population

Following ICH E3 guidance (https://database.ich.org/sites/default/files/
E3_Guideline.pdf), we need to summarize the number of participants
included in each efficacy analysis in Section 11.1, Data Sets Analysed.
library(haven) # Read SAS data
library(dplyr) # Manipulate data
library(tidyr) # Manipulate data
library(r2rtf) # Reporting in RTF format

In this chapter, we illustrate how to create a summary table for the analysis
population for a study.

37

https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://database.ich.org/sites/default/files/E3_Guideline.pdf

38 3 Analysis population

Summary of Analysis Sets
(All Participants Randomized)

Placebo
Xanomeline line Low

Dose
Xanomeline line

High Dose
n (%) n (%) n (%)

Participants in Population 86 84 84
Participants included in ITT population 86 (100.0) 84 (100.0) 84 (100.0)
Participants included in efficacy population 79 (91.9) 81 (96.4) 74 (88.1)
Participants included in safety population 86 (100.0) 84 (100.0) 84 (100.0)

The first step is to read relevant datasets into R. For the analysis population
table, all the required information is saved in the ADSL dataset. We can use
the haven package to read the dataset.
adsl <- read_sas("data-adam/adsl.sas7bdat")

We illustrate how to prepare a report data for a simplified analysis population
table using variables below:

• USUBJID: unique subject identifier

3.1 Helper functions 39

• ITTFL: intent-to-treat population flag
• EFFFL: efficacy population flag
• SAFFL: safety population flag
adsl %>% select(USUBJID, ITTFL, EFFFL, SAFFL)
#> # A tibble: 254 x 4
#> USUBJID ITTFL EFFFL SAFFL
#> <chr> <chr> <chr> <chr>
#> 1 01-701-1015 Y Y Y
#> 2 01-701-1023 Y Y Y
#> 3 01-701-1028 Y Y Y
#> 4 01-701-1033 Y Y Y
#> # i 250 more rows

3.1 Helper functions

Before we write the analysis code, let’s discuss the possibility of reusing R
code by writing helper functions.

As discussed in R for data science (https://r4ds.had.co.nz/functions.html#
when-should-you-write-a-function), “You should consider writing a function
whenever you’ve copied and pasted a block of code more than twice”.

In Chapter 2, there are a few repeating steps to:

• Format the percentages using the formatC() function.
• Calculate the numbers and percentages by treatment arm.

We create two ad-hoc functions and use them to create the tables in the rest
of this book.

To format numbers and percentages, we create a function called fmt_num().
It is a very simple function wrapping formatC().
fmt_num <- function(x, digits, width = digits + 4) {
formatC(
x,
digits = digits,
format = "f",
width = width

)
}

The main reason to create the fmt_num() function is to enhance the read-
ability of the analysis code.

https://r4ds.had.co.nz/functions.html#when-should-you-write-a-function
https://r4ds.had.co.nz/functions.html#when-should-you-write-a-function

40 3 Analysis population

For example, we can compare the two versions of code to format the percent-
age used in Chapter 2 and fmt_num().
formatC(n / n() * 100,
digits = 1, format = "f", width = 5

)

fmt_num(n / n() * 100, digits = 1)

To calculate the numbers and percentages of participants by groups, we pro-
vide a simple (but not robust) wrapper function, count_by(), using the dplyr
and tidyr package.

The function can be enhanced in multiple ways, but here we only focus on
simplicity and readability. More details about writing R functions can be
found in the STAT 545 course (https://stat545.com/functions-part1.html).
count_by <- function(data, # Input data set

grp, # Group variable
var, # Analysis variable
var_label = var, # Analysis variable label
id = "USUBJID") { # Subject ID variable

data <- data %>% rename(grp = !!grp, var = !!var, id = !!id)

left_join(
count(data, grp, var),
count(data, grp, name = "tot"),
by = "grp",

) %>%
mutate(
pct = fmt_num(100 * n / tot, digits = 1),
n = fmt_num(n, digits = 0),
npct = paste0(n, " (", pct, ")")

) %>%
pivot_wider(
id_cols = var,
names_from = grp,
values_from = c(n, pct, npct),
values_fill = list(n = "0", pct = fmt_num(0, digits = 0))

) %>%
mutate(var_label = var_label)

}

By using the count_by() function, we can simplify the analysis code as below.
count_by(adsl, "TRT01PN", "EFFFL") %>%
select(-ends_with(c("_54", "_81")))

#> # A tibble: 2 x 5

https://stat545.com/functions-part1.html

3.2 Analysis code 41

#> var n_0 pct_0 npct_0 var_label
#> <chr> <chr> <chr> <chr> <chr>
#> 1 N " 7" " 8.1" " 7 (8.1)" EFFFL
#> 2 Y " 79" " 91.9" " 79 (91.9)" EFFFL

3.2 Analysis code

With the helper function count_by, we can easily prepare a report dataset
as
Derive a randomization flag
adsl <- adsl %>% mutate(RANDFL = "Y")

pop <- count_by(adsl, "TRT01PN", "RANDFL",
var_label = "Participants in Population"

) %>%
select(var_label, starts_with("n_"))

pop1 <- bind_rows(
count_by(adsl, "TRT01PN", "ITTFL",
var_label = "Participants included in ITT population"

),
count_by(adsl, "TRT01PN", "EFFFL",
var_label = "Participants included in efficacy population"

),
count_by(adsl, "TRT01PN", "SAFFL",
var_label = "Participants included in safety population"

)
) %>%
filter(var == "Y") %>%
select(var_label, starts_with("npct_"))

Now we combine individual rows into one table for reporting purpose.
tbl_pop is used as input for r2rtf to create the final report.
names(pop) <- gsub("n_", "npct_", names(pop))
tbl_pop <- bind_rows(pop, pop1)

tbl_pop %>% select(var_label, npct_0)
#> # A tibble: 4 x 2
#> var_label npct_0
#> <chr> <chr>
#> 1 Participants in Population " 86"
#> 2 Participants included in ITT population " 86 (100.0)"

42 3 Analysis population

#> 3 Participants included in efficacy population " 79 (91.9)"
#> 4 Participants included in safety population " 86 (100.0)"

We define the format of the output using code below.
rel_width <- c(2, rep(1, 3))
colheader <- " | Placebo | Xanomeline line Low Dose| Xanomeline line High Dose"
tbl_pop %>%
Table title
rtf_title(
"Summary of Analysis Sets",
"(All Participants Randomized)"

) %>%
First row of column header
rtf_colheader(colheader,
col_rel_width = rel_width

) %>%
Second row of column header
rtf_colheader(" | n (%) | n (%) | n (%)",
border_top = "",
col_rel_width = rel_width

) %>%
Table body
rtf_body(
col_rel_width = rel_width,
text_justification = c("l", rep("c", 3))

) %>%
Encoding RTF syntax
rtf_encode() %>%
Save to a file
write_rtf("tlf/tbl_pop.rtf")

3.2 Analysis code 43

Summary of Analysis Sets
(All Participants Randomized)

Placebo
Xanomeline line Low

Dose
Xanomeline line

High Dose
n (%) n (%) n (%)

Participants in Population 86 84 84
Participants included in ITT population 86 (100.0) 84 (100.0) 84 (100.0)
Participants included in efficacy population 79 (91.9) 81 (96.4) 74 (88.1)
Participants included in safety population 86 (100.0) 84 (100.0) 84 (100.0)

The procedure to generate an analysis population table can be summarized
as follows:

• Step 1: Read data (i.e., adsl) into R.
• Step 2: Bind the counts/percentages of the ITT population, the efficacy

population, and the safety population by row using the count_by() func-
tion.

• Step 3: Format the output from Step 2 using r2rtf.

Chapter 4

Baseline characteristics

Following ICH E3 guidance (https://database.ich.org/sites/default/files/
E3_Guideline.pdf), we need to summarize critical demographic and baseline
characteristics of the participants in Section 11.2, Demographic and Other
Baseline Characteristics.

In this chapter, we illustrate how to create a simplified baseline characteristics
table for a study.

45

https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://database.ich.org/sites/default/files/E3_Guideline.pdf

46 4 Baseline characteristics

Baseline Characteristics of Participants
(All Participants Randomized)

Placebo
Xanomeline
High Dose

Xanomeline
Low Dose Overall

(N=86) (N=84) (N=84) (N=254)

SEX
 Female 53 (61.6%) 40 (47.6%) 50 (59.5%) 143 (56.3%)
 Male 33 (38.4%) 44 (52.4%) 34 (40.5%) 111 (43.7%)
Age
 Mean (SD) 75.2 (8.59) 74.4 (7.89) 75.7 (8.29) 75.1 (8.25)
 Median [Min, Max] 76.0 [52.0, 89.0] 76.0 [56.0, 88.0] 77.5 [51.0, 88.0] 77.0 [51.0, 89.0]
RACE
 Black or African American 8 (9.3%) 9 (10.7%) 6 (7.1%) 23 (9.1%)
 White 78 (90.7%) 74 (88.1%) 78 (92.9%) 230 (90.6%)
 American Indian or Alaska Native 0 (0%) 1 (1.2%) 0 (0%) 1 (0.4%)

There are many R packages that can efficiently summarize baseline informa-
tion. The table1 (https://github.com/benjaminrich/table1) R package is one
of them.
library(table1)
library(r2rtf)
library(haven)
library(dplyr)
library(tidyr)

https://github.com/benjaminrich/table1

4 Baseline characteristics 47

library(stringr)
library(tools)

As in previous chapters, we first read the adsl dataset that contains all the
required information for the baseline characteristics table.
adsl <- read_sas("data-adam/adsl.sas7bdat")

For simplicity, we only analyze SEX, AGE and, RACE in this example using
the table1 R package. More details of the table1 R package can be found
in the package vignettes (https://benjaminrich.github.io/table1/vignettes/
table1-examples.html).

The table1 R package directly creates an HTML report.
ana <- adsl %>%
mutate(
SEX = factor(SEX, c("F", "M"), c("Female", "Male")),
RACE = toTitleCase(tolower(RACE))

)

tbl <- table1(~ SEX + AGE + RACE | TRT01P, data = ana)
tbl

 Placebo Xanomeline High Dose Xanomeline Low Dose Overall
(N=86) (N=84) (N=84) (N=254)

SEX
Female 53 (61.6%) 40 (47.6%) 50 (59.5%) 143 (56.3%)
Male 33 (38.4%) 44 (52.4%) 34 (40.5%) 111 (43.7%)

Age
Mean (SD) 75.2 (8.59) 74.4 (7.89) 75.7 (8.29) 75.1 (8.25)
Median [Min, Max] 76.0 [52.0, 89.0] 76.0 [56.0, 88.0] 77.5 [51.0, 88.0] 77.0 [51.0, 89.0]

RACE
Black or African American 8 (9.3%) 9 (10.7%) 6 (7.1%) 23 (9.1%)
White 78 (90.7%) 74 (88.1%) 78 (92.9%) 230 (90.6%)
American Indian or Alaska Native 0 (0%) 1 (1.2%) 0 (0%) 1 (0.4%)

The code below transfer the output into a dataframe that only contains ASCII
characters recommended by regulatory agencies. tbl_base is used as input
for r2rtf to create the final report.
tbl_base <- tbl %>%
as.data.frame() %>%
as_tibble() %>%
mutate(across(

https://benjaminrich.github.io/table1/vignettes/table1-examples.html
https://benjaminrich.github.io/table1/vignettes/table1-examples.html

48 4 Baseline characteristics

everything(),
~ str_replace_all(.x, intToUtf8(160), " ")

))

names(tbl_base) <- str_replace_all(names(tbl_base), intToUtf8(160), " ")
tbl_base
#> # A tibble: 11 x 5
#> ` ` Placebo `Xanomeline High Dose` `Xanomeline Low Dose` Overall
#> <chr> <chr> <chr> <chr> <chr>
#> 1 "" "(N=86)" "(N=84)" "(N=84)" "(N=254)"
#> 2 "SEX" "" "" "" ""
#> 3 " Female" "53 (61.6%)" "40 (47.6%)" "50 (59.5%)" "143 (56~
#> 4 " Male" "33 (38.4%)" "44 (52.4%)" "34 (40.5%)" "111 (43~
#> # i 7 more rows

We define the format of the output. We highlight items that are not discussed
in previous discussion.

text_indent_first and text_indent_left are used to control the indent
space of text. They are helpful when you need to control the white space of
a long phrase, “AMERICAN INDIAN OR ALASKA NATIVE” in the table
provides an example.
colheader1 <- paste(names(tbl_base), collapse = "|")
colheader2 <- paste(tbl_base[1,], collapse = "|")
rel_width <- c(2.5, rep(1, 4))

tbl_base[-1,] %>%
rtf_title(
"Baseline Characteristics of Participants",
"(All Participants Randomized)"

) %>%
rtf_colheader(colheader1,
col_rel_width = rel_width

) %>%
rtf_colheader(colheader2,
border_top = "",
col_rel_width = rel_width

) %>%
rtf_body(
col_rel_width = rel_width,
text_justification = c("l", rep("c", 4)),
text_indent_first = -240,
text_indent_left = 180

) %>%

4 Baseline characteristics 49

rtf_encode() %>%
write_rtf("tlf/tlf_base.rtf")

Baseline Characteristics of Participants
(All Participants Randomized)

Placebo
Xanomeline
High Dose

Xanomeline
Low Dose Overall

(N=86) (N=84) (N=84) (N=254)

SEX
 Female 53 (61.6%) 40 (47.6%) 50 (59.5%) 143 (56.3%)
 Male 33 (38.4%) 44 (52.4%) 34 (40.5%) 111 (43.7%)
Age
 Mean (SD) 75.2 (8.59) 74.4 (7.89) 75.7 (8.29) 75.1 (8.25)
 Median [Min, Max] 76.0 [52.0, 89.0] 76.0 [56.0, 88.0] 77.5 [51.0, 88.0] 77.0 [51.0, 89.0]
RACE
 Black or African American 8 (9.3%) 9 (10.7%) 6 (7.1%) 23 (9.1%)
 White 78 (90.7%) 74 (88.1%) 78 (92.9%) 230 (90.6%)
 American Indian or Alaska Native 0 (0%) 1 (1.2%) 0 (0%) 1 (0.4%)

In conclusion, the procedure to generate demographic and baseline character-
istics table is summarized as follows:

• Step 1: Read the data set.
• Step 2: Use table1::table1() to get the baseline characteristics table.

50 4 Baseline characteristics

• Step 3: Transfer the output from Step 2 into a data frame that only con-
tains ASCII characters.

• Step 4: Define the format of the RTF table by using the R package r2rtf.

Chapter 5

Efficacy table

Following ICH E3 guidance (https://database.ich.org/sites/default/files/
E3_Guideline.pdf), primary and secondary efficacy endpoints need to be
summarized in Section 11.4, Efficacy Results and Tabulations of Individual
Participant.
library(haven) # Read SAS data
library(dplyr) # Manipulate data
library(tidyr) # Manipulate data
library(r2rtf) # Reporting in RTF format
library(emmeans) # LS mean estimation

In this chapter, we illustrate how to generate an efficacy table for a study.
For efficacy analysis, only the change from baseline glucose data at week 24
is analyzed.

51

https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://database.ich.org/sites/default/files/E3_Guideline.pdf

52 5 Efficacy table

ANCOVA of Change from Baseline Glucose (mmol/L) at Week 24
LOCF

Efficacy Analysis Population

Baseline Week 24 Change from Baseline

Treatment N Mean (SD) N Mean (SD) N Mean (SD) LS Mean (95% CI)a

Placebo 79 5.7 (2.23) 57 5.7 (1.83) 57 -0.1 (2.68) 0.07 (-0.27, 0.41)
Xanomeline Low Dose 79 5.4 (0.95) 26 5.7 (1.26) 26 0.2 (0.82) -0.11 (-0.45, 0.23)
Xanomeline High Dose 74 5.4 (1.37) 30 6.0 (1.92) 30 0.5 (1.94) 0.40 (0.05, 0.75)

Pairwise Comparison Difference in LS Mean (95% CI)a p-Value

Xanomeline Low Dose - Placebo -0.17 (-0.65, 0.30) 0.757
Xanomeline High Dose - Placebo 0.33 (-0.16, 0.82) 0.381
aBased on an ANCOVA model after adjusting baseline value. LOCF approach is used to impute missing values.
ANCOVA = Analysis of Covariance, LOCF = Last Observation Carried Forward
CI = Confidence Interval, LS = Least Squares, SD = Standard Deviation

5.1 Analysis dataset

To prepare the analysis, both adsl and adlbc datasets are required.
adsl <- read_sas("data-adam/adsl.sas7bdat")
adlb <- read_sas("data-adam/adlbc.sas7bdat")

5.2 Helper functions 53

First, both the population and the data in scope are selected. The analysis is
done on the efficacy population, identified by EFFFL == "Y", and all records
post baseline (AVISITN >= 1) and on or before Week 24 (AVISITN <= 24).
Here the variable AVISITN is the numerical analysis visit. For example, if the
analysis visit is recorded as “Baseline” (i.e., AVISIT = Baseline), AVISITN
= 0; if the analysis visit is recorded as “Week 24” (i.e., AVISIT = Week 24),
AVISITN = 24; if the analysis visit is blank, AVISITN is also blank. We will
discuss these missing values in Section 6.4.
gluc <- adlb %>%
left_join(adsl %>% select(USUBJID, EFFFL), by = "USUBJID") %>%
PARAMCD is parameter code and here we focus on Glucose (mg/dL)
filter(EFFFL == "Y" & PARAMCD == "GLUC") %>%
arrange(TRTPN) %>%
mutate(TRTP = factor(TRTP, levels = unique(TRTP)))

ana <- gluc %>%
filter(AVISITN > 0 & AVISITN <= 24) %>%
arrange(AVISITN) %>%
mutate(AVISIT = factor(AVISIT, levels = unique(AVISIT)))

Below is the first few records of the analysis dataset.

• AVAL: analysis value
• BASE: baseline value
• CHG: change from baseline
ana %>% select(USUBJID, TRTPN, AVISIT, AVAL, BASE, CHG)
#> # A tibble: 1,377 x 6
#> USUBJID TRTPN AVISIT AVAL BASE CHG
#> <chr> <dbl> <fct> <dbl> <dbl> <dbl>
#> 1 01-701-1015 0 " Week 2" 4.66 4.72 -0.0555
#> 2 01-701-1023 0 " Week 2" 5.77 5.33 0.444
#> 3 01-701-1047 0 " Week 2" 5.55 5.55 0
#> 4 01-701-1118 0 " Week 2" 4.88 4.05 0.833
#> # i 1,373 more rows

5.2 Helper functions

To prepare the report, we create a few helper functions by using the
fmt_num() function defined in Chapter 3.

• Format estimators

54 5 Efficacy table

fmt_num <- function(x, digits, width = digits + 4) {
formatC(
x,
digits = digits,
format = "f",
width = width

)
}

fmt_est <- function(.mean,
.sd,
digits = c(1, 2)) {

.mean <- fmt_num(.mean, digits[1], width = digits[1] + 4)

.sd <- fmt_num(.sd, digits[2], width = digits[2] + 3)
paste0(.mean, " (", .sd, ")")

}

• Format confidence interval
fmt_ci <- function(.est,

.lower,

.upper,
digits = 2,
width = digits + 3) {

.est <- fmt_num(.est, digits, width)

.lower <- fmt_num(.lower, digits, width)

.upper <- fmt_num(.upper, digits, width)
paste0(.est, " (", .lower, ",", .upper, ")")

}

• Format p-value
fmt_pval <- function(.p, digits = 3) {
scale <- 10^(-1 * digits)
p_scale <- paste0("<", digits)
if_else(.p < scale, p_scale, fmt_num(.p, digits = digits))

}

5.3 Summary of observed data

First the observed data at Baseline and Week 24 are summarized using code
below:
t11 <- gluc %>%
filter(AVISITN %in% c(0, 24)) %>%

5.3 Summary of observed data 55

group_by(TRTPN, TRTP, AVISITN) %>%
summarise(
n = n(),
mean_sd = fmt_est(mean(AVAL), sd(AVAL))

) %>%
pivot_wider(
id_cols = c(TRTP, TRTPN),
names_from = AVISITN,
values_from = c(n, mean_sd)

)

t11
#> # A tibble: 3 x 6
#> # Groups: TRTPN, TRTP [3]
#> TRTP TRTPN n_0 n_24 mean_sd_0 mean_sd_24
#> <fct> <dbl> <int> <int> <chr> <chr>
#> 1 Placebo 0 79 57 " 5.7 (2.23)" " 5.7 (1.83)"
#> 2 Xanomeline Low Dose 54 79 26 " 5.4 (0.95)" " 5.7 (1.26)"
#> 3 Xanomeline High Dose 81 74 30 " 5.4 (1.37)" " 6.0 (1.92)"

Also the observed change from baseline glucose at Week 24 is summarized
using code below:
t12 <- gluc %>%
filter(AVISITN %in% 24) %>%
group_by(TRTPN, AVISITN) %>%
summarise(
n_chg = n(),
mean_chg = fmt_est(
mean(CHG, na.rm = TRUE),
sd(CHG, na.rm = TRUE)

)
)

t12
#> # A tibble: 3 x 4
#> # Groups: TRTPN [3]
#> TRTPN AVISITN n_chg mean_chg
#> <dbl> <dbl> <int> <chr>
#> 1 0 24 57 " -0.1 (2.68)"
#> 2 54 24 26 " 0.2 (0.82)"
#> 3 81 24 30 " 0.5 (1.94)"

56 5 Efficacy table

5.4 Missing data imputation

In clinical trials, missing data is inevitable. In this study, there are missing
values in glucose data.
count(ana, AVISIT)
#> # A tibble: 8 x 2
#> AVISIT n
#> <fct> <int>
#> 1 " Week 2" 229
#> 2 " Week 4" 211
#> 3 " Week 6" 197
#> 4 " Week 8" 187
#> # i 4 more rows

For simplicity and illustration purpose, we use the last observation carried for-
ward (LOCF) approach to handle missing data. LOCF approach is a single im-
putation approach that is not recommended in real application. Interested
readers can find more discussion on missing data approaches in the book: The
Prevention and Treatment of Missing Data in Clinical Trials (https://www.
ncbi.nlm.nih.gov/books/NBK209904/pdf/Bookshelf_NBK209904.pdf).
ana_locf <- ana %>%
group_by(USUBJID) %>%
mutate(locf = AVISITN == max(AVISITN)) %>%
filter(locf)

5.5 ANCOVA model

The imputed data is analyzed using the ANCOVA model with treatment and
baseline glucose as covariates.
fit <- lm(CHG ~ BASE + TRTP, data = ana_locf)
summary(fit)
#>
#> Call:
#> lm(formula = CHG ~ BASE + TRTP, data = ana_locf)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -6.9907 -0.7195 -0.2367 0.2422 7.0754
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)

https://www.ncbi.nlm.nih.gov/books/NBK209904/pdf/Bookshelf_NBK209904.pdf
https://www.ncbi.nlm.nih.gov/books/NBK209904/pdf/Bookshelf_NBK209904.pdf

5.5 ANCOVA model 57

#> (Intercept) 3.00836 0.39392 7.637 6.23e-13 ***
#> BASE -0.53483 0.06267 -8.535 2.06e-15 ***
#> TRTPXanomeline Low Dose -0.17367 0.24421 -0.711 0.478
#> TRTPXanomeline High Dose 0.32983 0.24846 1.327 0.186
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 1.527 on 226 degrees of freedom
#> (2 observations deleted due to missingness)
#> Multiple R-squared: 0.2567, Adjusted R-squared: 0.2468
#> F-statistic: 26.01 on 3 and 226 DF, p-value: 1.714e-14

The emmeans R package is used to obtain within and between group least
square (LS) mean
fit_within <- emmeans(fit, "TRTP")
fit_within
#> TRTP emmean SE df lower.CL upper.CL
#> Placebo 0.0676 0.172 226 -0.272 0.407
#> Xanomeline Low Dose -0.1060 0.173 226 -0.447 0.235
#> Xanomeline High Dose 0.3975 0.179 226 0.045 0.750
#>
#> Confidence level used: 0.95

t13 <- fit_within %>%
as_tibble() %>%
mutate(ls = fmt_ci(emmean, lower.CL, upper.CL)) %>%
select(TRTP, ls)

t13
#> # A tibble: 3 x 2
#> TRTP ls
#> <fct> <chr>
#> 1 Placebo " 0.07 (-0.27, 0.41)"
#> 2 Xanomeline Low Dose "-0.11 (-0.45, 0.23)"
#> 3 Xanomeline High Dose " 0.40 (0.05, 0.75)"

fit_between <- pairs(fit_within, reverse = TRUE)
fit_between
#> contrast estimate SE df t.ratio p.value
#> Xanomeline Low Dose - Placebo -0.174 0.244 226 -0.711 0.7571
#> Xanomeline High Dose - Placebo 0.330 0.248 226 1.327 0.3814
#> Xanomeline High Dose - Xanomeline Low Dose 0.504 0.249 226 2.024 0.1087
#>
#> P value adjustment: tukey method for comparing a family of 3 estimates

58 5 Efficacy table

t2 <- fit_between %>%
as_tibble() %>%
mutate(
ls = fmt_ci(
estimate,
estimate - 1.96 * SE,
estimate + 1.96 * SE

),
p = fmt_pval(p.value)

) %>%
filter(stringr::str_detect(contrast, "- Placebo")) %>%
select(contrast, ls, p)

t2
#> # A tibble: 2 x 3
#> contrast ls p
#> <chr> <chr> <chr>
#> 1 Xanomeline Low Dose - Placebo "-0.17 (-0.65, 0.30)" " 0.757"
#> 2 Xanomeline High Dose - Placebo " 0.33 (-0.16, 0.82)" " 0.381"

5.6 Reporting

t11, t12 and t13 are combined to get the first part of the report table
t1 <- cbind(
t11 %>% ungroup() %>% select(TRTP, ends_with("0"), ends_with("24")),
t12 %>% ungroup() %>% select(ends_with("chg")),
t13 %>% ungroup() %>% select(ls)

)
t1
#> TRTP n_0 mean_sd_0 n_24 mean_sd_24 n_chg mean_chg
#> 1 Placebo 79 5.7 (2.23) 57 5.7 (1.83) 57 -0.1 (2.68)
#> 2 Xanomeline Low Dose 79 5.4 (0.95) 26 5.7 (1.26) 26 0.2 (0.82)
#> 3 Xanomeline High Dose 74 5.4 (1.37) 30 6.0 (1.92) 30 0.5 (1.94)
#> ls
#> 1 0.07 (-0.27, 0.41)
#> 2 -0.11 (-0.45, 0.23)
#> 3 0.40 (0.05, 0.75)

Then r2rtf is used to prepare the table format for t1. We also highlight how
to handle special characters in this example.

5.6 Reporting 59

Special characters ^ and _ are used to define superscript and subscript of
text. And {} is to define the part that will be impacted. For example, {^a}
provides a superscript a for footnote notation. r2rtf also supports most
LaTeX characters. Examples can be found on the r2rtf get started page
(https://merck.github.io/r2rtf/articles/r2rtf.html#special-character). The
text_convert argument in r2rtf_*() functions controls whether to convert
special characters.
t1_rtf <- t1 %>%
data.frame() %>%
rtf_title(c(
"ANCOVA of Change from Baseline Glucose (mmol/L) at Week 24",
"LOCF",
"Efficacy Analysis Population"

)) %>%
rtf_colheader("| Baseline | Week 24 | Change from Baseline",
col_rel_width = c(2.5, 2, 2, 4)

) %>%
rtf_colheader(
paste(
"Treatment |",
paste0(rep("N | Mean (SD) | ", 3), collapse = ""),
"LS Mean (95% CI){^a}"

),
col_rel_width = c(2.5, rep(c(0.5, 1.5), 3), 2)

) %>%
rtf_body(
text_justification = c("l", rep("c", 7)),
col_rel_width = c(2.5, rep(c(0.5, 1.5), 3), 2)

) %>%
rtf_footnote(c(
"{^a}Based on an ANCOVA model after adjusting baseline value. LOCF approach is used to impute missing values.",
"ANCOVA = Analysis of Covariance, LOCF = Last Observation Carried Forward",
"CI = Confidence Interval, LS = Least Squares, SD = Standard Deviation"

))

t1_rtf %>%
rtf_encode() %>%
write_rtf("tlf/tlf_eff1.rtf")

https://merck.github.io/r2rtf/articles/r2rtf.html#special-character

60 5 Efficacy table

ANCOVA of Change from Baseline Glucose (mmol/L) at Week 24
LOCF

Efficacy Analysis Population

Baseline Week 24 Change from Baseline

Treatment N Mean (SD) N Mean (SD) N Mean (SD) LS Mean (95% CI)a

Placebo 79 5.7 (2.23) 57 5.7 (1.83) 57 -0.1 (2.68) 0.07 (-0.27, 0.41)
Xanomeline Low Dose 79 5.4 (0.95) 26 5.7 (1.26) 26 0.2 (0.82) -0.11 (-0.45, 0.23)
Xanomeline High Dose 74 5.4 (1.37) 30 6.0 (1.92) 30 0.5 (1.94) 0.40 (0.05, 0.75)
aBased on an ANCOVA model after adjusting baseline value. LOCF approach is used to impute missing values.
ANCOVA = Analysis of Covariance, LOCF = Last Observation Carried Forward
CI = Confidence Interval, LS = Least Squares, SD = Standard Deviation

We also use r2rtf to prepare the table format for t2
t2_rtf <- t2 %>%
data.frame() %>%
rtf_colheader("Pairwise Comparison | Difference in LS Mean (95% CI){^a} | p-Value",
col_rel_width = c(4.5, 4, 2)

) %>%
rtf_body(
text_justification = c("l", "c", "c"),

5.6 Reporting 61

col_rel_width = c(4.5, 4, 2)
)

t2_rtf %>%
rtf_encode() %>%
write_rtf("tlf/tlf_eff2.rtf")

Pairwise Comparison Difference in LS Mean (95% CI)a p-Value

Xanomeline Low Dose - Placebo -0.17 (-0.65, 0.30) 0.757
Xanomeline High Dose - Placebo 0.33 (-0.16, 0.82) 0.381

62 5 Efficacy table

Finally, we combine the two parts to get the final table using r2rtf. This is
achieved by providing a list of t1_rtf and t2_rtf as input for rtf_encode.
list(t1_rtf, t2_rtf) %>%
rtf_encode() %>%
write_rtf("tlf/tlf_eff.rtf")

ANCOVA of Change from Baseline Glucose (mmol/L) at Week 24
LOCF

Efficacy Analysis Population

Baseline Week 24 Change from Baseline

Treatment N Mean (SD) N Mean (SD) N Mean (SD) LS Mean (95% CI)a

Placebo 79 5.7 (2.23) 57 5.7 (1.83) 57 -0.1 (2.68) 0.07 (-0.27, 0.41)
Xanomeline Low Dose 79 5.4 (0.95) 26 5.7 (1.26) 26 0.2 (0.82) -0.11 (-0.45, 0.23)
Xanomeline High Dose 74 5.4 (1.37) 30 6.0 (1.92) 30 0.5 (1.94) 0.40 (0.05, 0.75)

Pairwise Comparison Difference in LS Mean (95% CI)a p-Value

Xanomeline Low Dose - Placebo -0.17 (-0.65, 0.30) 0.757
Xanomeline High Dose - Placebo 0.33 (-0.16, 0.82) 0.381
aBased on an ANCOVA model after adjusting baseline value. LOCF approach is used to impute missing values.
ANCOVA = Analysis of Covariance, LOCF = Last Observation Carried Forward
CI = Confidence Interval, LS = Least Squares, SD = Standard Deviation

In conclusion, the procedure to generate the above efficacy results table is
summarized as follows.

5.6 Reporting 63

• Step 1: Read the data (i.e., adsl and adlb) into R.
• Step 2: Define the analysis dataset. In this example, we define two analysis

datasets. The first dataset is the efficacy population (gluc). The second
dataset is the collection of all records post baseline and on or before week
24 (ana).

• Step 3: Impute the missing values. In this example, we name the ana
dataset after imputation as ana_locf.

• Step 4: Calculate the mean and standard derivation of efficacy endpoint
(i.e., gluc), and then format it into an RTF table.

• Step 5: Calculate the pairwise comparison by ANCOVA model, and then
format it into an RTF table.

• Step 6: Combine the outputs from steps 4 and 5 by rows.

Chapter 6

Efficacy figure

Following the ICH E3 guidance (https://database.ich.org/sites/default/files/
E3_Guideline.pdf), primary and secondary efficacy endpoints need to be sum-
marized in Section 11.4, Efficacy Results and Tabulations of Individual Par-
ticipant.
library(haven) # Read SAS data
library(dplyr) # Manipulate data
library(r2rtf) # Reporting in RTF format
library(survival) # Fit survival model

In this chapter, we illustrate how to create a simplified Kaplan-Meier plot
in a study. For the survival analysis in efficacy, time to dermatologic event
(TTDE) will be analyzed.

Note

R packages such as visR (https://cran.r-project.org/package=visR)
and survminer (https://cran.r-project.org/package=survminer) can
create more informative Kaplan-Meier plots. Interested readers can find
examples on their websites.

6.1 Analysis dataset

To prepare the analysis, the adtte dataset is required.

65

https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://cran.r-project.org/package=visR
https://cran.r-project.org/package=survminer

66 6 Efficacy figure

adtte <- read_sas("data-adam/adtte.sas7bdat")

First, to prepare the analysis ready data, filter all records for the efficacy
endpoint of time to event of interest (TTDE) using PARAMCD (or PARAM, PRAMN),
then select the survival analysis related variables:

• TRTP: treatment arm (using corresponding numeric code TRTAN to re-order
the levels, “Placebo” will be the reference level)

• AVAL: time-to-event analysis value
• CNSR: event (censoring) status
adtte_ttde <- adtte %>%
filter(PARAMCD == "TTDE") %>%
select(TRTP, TRTAN, AVAL, CNSR) %>%
mutate(
TRTP = forcats::fct_reorder(TRTP, TRTAN), # Recorder levels
AVAL_m = AVAL / 30.4367 # Convert Day to Month

)

6.2 Create Kaplan-Meier curve

The survival package is used to obtain the K-M estimate.
Fit survival model, convert the time value from Days to Month
fit <- survfit(Surv(AVAL_m, 1 - CNSR) ~ TRTP, data = adtte_ttde)

We save the simplified K-M plot into a .png file using code below.
Save as a PNG file
png(
file = "tlf/fig_km.png",
width = 3000,
height = 2000,
res = 300

)

plot(
fit,
xlab = "Time in Months",
ylab = "Survival probability",
mark.time = TRUE,
lwd = 2,
col = c(2, 3, 4),
lty = c(1, 2, 3)

)

6.2 Create Kaplan-Meier curve 67

dev.off()

Now, we can use the r2rtf package to create a formatted RTF figure. More
details can be found on the r2rtf website (https://merck.github.io/r2rtf/
articles/example-figure.html).
Create RTF figure
rtf_read_figure("tlf/fig_km.png") %>% # Read the PNG file from the file path
rtf_title(
"Kaplan-Meier Plot for Time to First Dermatologic Event by Treatment Group",
"All Participants"

) %>% # Add title or subtitle
rtf_footnote("footnote") %>% # Add footnote
rtf_source("[datasource: adam-adtte]") %>% # Add data source
rtf_figure(fig_width = 6, fig_height = 4) %>% # Set proportional figure size to the original PNG figure size
rtf_encode(doc_type = "figure") %>% # Encode figure as rtf
write_rtf(file = "tlf/tlf_km.rtf")

https://merck.github.io/r2rtf/articles/example-figure.html
https://merck.github.io/r2rtf/articles/example-figure.html

68 6 Efficacy figure

Kaplan-Meier Plot for Time to First Dermatologic Event by Treatment Group
All Participants

footnote
[datasource: adam-adtte]

In conclusion, the steps to create a K-M plot are as follows.

• Step 1: Read the data adtte into R.
• Step 2: Define the analysis-ready dataset. In this example, we define the

analysis dataset for the TTDE endpoint adtte_ttde.
• Step 3: Save figures into png files based on required analysis specification.
• Step 4: Create RTF output using the r2rtf package.

Chapter 7

AE summary

Following ICH E3 guidance (https://database.ich.org/sites/default/files/
E3_Guideline.pdf), we summarize number of participants that were included
in each safety analysis in Section 12.2, Adverse Events (AEs).
library(haven) # Read SAS data
library(dplyr) # Manipulate data
library(tidyr) # Manipulate data
library(r2rtf) # Reporting in RTF format

In this chapter, we illustrate how to summarize AEs information for a study.

69

https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://database.ich.org/sites/default/files/E3_Guideline.pdf

70 7 AE summary

Analysis of Adverse Event Summary
(Safety Analysis Population)

Placebo Xanomeline Low Dose
Xanomeline High

Dose

n (%) n (%) n (%)

Participants in population 86 84 84
With one or more adverse events 69 (80.2) 77 (91.7) 79 (94.0)
With drug-related adverse events 44 (51.2) 73 (86.9) 70 (83.3)
With serious adverse events 0 (0.0) 1 (1.2) 2 (2.4)
With serious drug-related adverse events 0 (0.0) 1 (1.2) 1 (1.2)
Who died 2 (2.3) 1 (1.2) 0 (0.0)

Every subject is counted a single time for each applicable row and column.

The data used to summarize AE information is in adsl and adae datasets.
adsl <- read_sas("data-adam/adsl.sas7bdat")
adae <- read_sas("data-adam/adae.sas7bdat")

We first summarize participants in population by treatment arm.
pop <- adsl %>%
filter(SAFFL == "Y") %>%
rename(TRTAN = TRT01AN) %>%

7 AE summary 71

count(TRTAN, name = "tot")

pop
#> # A tibble: 3 x 2
#> TRTAN tot
#> <dbl> <int>
#> 1 0 86
#> 2 54 84
#> 3 81 84

We transform the data to simplify the analysis of each required AE criteria
of interest.

• With one or more adverse events
• With drug-related adverse events
• With serious adverse events
• With serious drug-related adverse events
• Who died
tidy_ae <- adae %>%
mutate(
all = SAFFL == "Y",
drug = AEREL %in% c("POSSIBLE", "PROBABLE"),
ser = AESER == "Y",
drug_ser = drug & ser,
die = AEOUT == "FATAL"

) %>%
select(USUBJID, TRTAN, all, drug, ser, drug_ser, die) %>%
pivot_longer(cols = c(all, drug, ser, drug_ser, die))

tidy_ae
#> # A tibble: 5,955 x 4
#> USUBJID TRTAN name value
#> <chr> <dbl> <chr> <lgl>
#> 1 01-701-1015 0 all TRUE
#> 2 01-701-1015 0 drug TRUE
#> 3 01-701-1015 0 ser FALSE
#> 4 01-701-1015 0 drug_ser FALSE
#> # i 5,951 more rows

We summarize the number and percentage of participants who meet each AE
criteria.
fmt_num <- function(x, digits, width = digits + 4) {
formatC(
x,
digits = digits,

72 7 AE summary

format = "f",
width = width

)
}

ana <- tidy_ae %>%
filter(value == TRUE) %>%
group_by(TRTAN, name) %>%
summarise(n = n_distinct(USUBJID)) %>%
left_join(pop, by = "TRTAN") %>%
mutate(
pct = fmt_num(n / tot * 100, digits = 1),
n = fmt_num(n, digits = 0),
pct = paste0("(", pct, ")")

)

ana
#> # A tibble: 12 x 5
#> # Groups: TRTAN [3]
#> TRTAN name n tot pct
#> <dbl> <chr> <chr> <int> <chr>
#> 1 0 all " 69" 86 (80.2)
#> 2 0 die " 2" 86 (2.3)
#> 3 0 drug " 44" 86 (51.2)
#> 4 54 all " 77" 84 (91.7)
#> 5 54 die " 1" 84 (1.2)
#> 6 54 drug " 73" 84 (86.9)
#> 7 54 drug_ser " 1" 84 (1.2)
#> 8 54 ser " 1" 84 (1.2)
#> 9 81 all " 79" 84 (94.0)
#> 10 81 drug " 70" 84 (83.3)
#> 11 81 drug_ser " 1" 84 (1.2)
#> 12 81 ser " 2" 84 (2.4)

We prepare reporting-ready dataset for each AE group.
t_ae <- ana %>%
pivot_wider(
id_cols = "name",
names_from = TRTAN,
values_from = c(n, pct),
values_fill = list(
n = " 0",
pct = "(0.0)"

)
)

7 AE summary 73

t_ae <- t_ae %>%
mutate(name = factor(
name,
c("all", "drug", "ser", "drug_ser", "die"),
c(
"With one or more adverse events",
"With drug-related adverse events",
"With serious adverse events",
"With serious drug-related adverse events",
"Who died"

)
)) %>%
arrange(name)

We prepare reporting-ready dataset for the analysis population.
t_pop <- pop %>%
mutate(
name = "Participants in population",
tot = fmt_num(tot, digits = 0)

) %>%
pivot_wider(
id_cols = name,
names_from = TRTAN,
names_prefix = "n_",
values_from = tot

)

t_pop
#> # A tibble: 1 x 4
#> name n_0 n_54 n_81
#> <chr> <chr> <chr> <chr>
#> 1 Participants in population " 86" " 84" " 84"

The final report data is saved in tbl_ae_summary.
tbl_ae_summary <- bind_rows(t_pop, t_ae) %>%
select(name, ends_with("_0"), ends_with("_54"), ends_with("_81"))

tbl_ae_summary
#> # A tibble: 6 x 7
#> name n_0 pct_0 n_54 pct_54 n_81 pct_81
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 Participants in population " 86" <NA> " 84" <NA> " 84" <NA>
#> 2 With one or more adverse events " 69" (80.2) " 77" (91.7) " 79" (94.0)

74 7 AE summary

#> 3 With drug-related adverse events " 44" (51.2) " 73" (86.9) " 70" (83.3)
#> 4 With serious adverse events " 0" (0.0) " 1" (1.2) " 2" (2.4)
#> # i 2 more rows

We define the format of the output using code below:
tbl_ae_summary %>%
rtf_title(
"Analysis of Adverse Event Summary",
"(Safety Analysis Population)"

) %>%
rtf_colheader(" | Placebo | Xanomeline Low Dose| Xanomeline High Dose",
col_rel_width = c(3.5, rep(2, 3))

) %>%
rtf_colheader(" | n | (%) | n | (%) | n | (%)",
col_rel_width = c(3.5, rep(c(0.7, 1.3), 3)),
border_top = c("", rep("single", 6)),
border_left = c("single", rep(c("single", ""), 3))

) %>%
rtf_body(
col_rel_width = c(3.5, rep(c(0.7, 1.3), 3)),
text_justification = c("l", rep("c", 6)),
border_left = c("single", rep(c("single", ""), 3))

) %>%
rtf_footnote("Every subject is counted a single time for each applicable row and column.") %>%
rtf_encode() %>%
write_rtf("tlf/tlf_ae_summary.rtf")

7 AE summary 75

Analysis of Adverse Event Summary
(Safety Analysis Population)

Placebo Xanomeline Low Dose
Xanomeline High

Dose

n (%) n (%) n (%)

Participants in population 86 84 84
With one or more adverse events 69 (80.2) 77 (91.7) 79 (94.0)
With drug-related adverse events 44 (51.2) 73 (86.9) 70 (83.3)
With serious adverse events 0 (0.0) 1 (1.2) 2 (2.4)
With serious drug-related adverse events 0 (0.0) 1 (1.2) 1 (1.2)
Who died 2 (2.3) 1 (1.2) 0 (0.0)

Every subject is counted a single time for each applicable row and column.

The procedure to generate an AE summary table can be summarized as
follows:

• Step 1: Read data (i.e., adae and adsl) into R.
• Step 2: Summarize participants in population by treatment arm, and name

the dataset as t_pop.
• Step 3: Summarize participants in population by required AE criteria of

interest, and name the dataset as t_ae.
• Step 4: Row-wise combine t_pop and t_ae and format it by using r2rtf.

Chapter 8

Specific AE

Following ICH E3 guidance (https://database.ich.org/sites/default/files/
E3_Guideline.pdf), we need to summarize number of participants for each
specific AE in Section 12.2, Adverse Events (AEs).
library(haven) # Read SAS data
library(dplyr) # Manipulate data
library(tidyr) # Manipulate data
library(r2rtf) # Reporting in RTF format

In this chapter, we illustrate how to summarize simplified specific AE infor-
mation for a study.

77

https://database.ich.org/sites/default/files/E3_Guideline.pdf
https://database.ich.org/sites/default/files/E3_Guideline.pdf

78 8 Specific AE

Analysis of Participants With Specific Adverse Events
(Safety Analysis Population)

Placebo
Xanomeline Low

Dose
Xanomeline High

Dose
n n n

 Participants in population 86 84 84

Cardiac Disorders 13 13 18
 Atrial Fibrillation 1 1 3
 Atrial Flutter 0 1 1
 Atrial Hypertrophy 1 0 0
 Atrioventricular Block First Degree 1 1 0
 Atrioventricular Block Second Degree 2 0 3
 Bradycardia 1 0 0
 Bundle Branch Block Left 1 0 0
 Bundle Branch Block Right 1 1 0
 Cardiac Disorder 0 0 1
 Cardiac Failure Congestive 1 0 0
 Myocardial Infarction 4 2 4
 Palpitations 0 2 0
 Sinus Arrhythmia 1 0 0
 Sinus Bradycardia 2 7 8
 Supraventricular Extrasystoles 1 1 1
 Supraventricular Tachycardia 0 1 0
 Tachycardia 1 0 0
 Ventricular Extrasystoles 0 2 1
 Ventricular Hypertrophy 1 0 0
 Wolff-Parkinson-White Syndrome 0 1 0
Congenital, Familial and Genetic Disorders 0 1 2
 Ventricular Septal Defect 0 1 2
Ear and Labyrinth Disorders 1 2 1
 Cerumen Impaction 0 1 0
 Ear Pain 1 0 0
 Tinnitus 0 1 0
 Vertigo 0 1 1
Eye Disorders 4 2 1
 Conjunctival Haemorrhage 0 1 0
 Conjunctivitis 2 0 0
 Eye Allergy 1 0 0

The data used to summarize AE information is in adsl and adae datasets.
adsl <- read_sas("data-adam/adsl.sas7bdat")
adae <- read_sas("data-adam/adae.sas7bdat")

For illustration purpose, we only provide counts in the simplified table. The
percentage of participants for each AE can be calculated as shown in Chap-
ter 7.

8 Specific AE 79

Here, we focus on the analysis script for two advanced features for a table
layout.

• group content: AE can be summarized in multiple nested layers. (e.g., by
system organ class (SOC, AESOC) and specific AE term (AEDECOD))

• pagenization: there are many AE terms that can not be covered in one
page. Column headers and SOC information need to be repeated on every
page.

In the code below, we count the number of participants in each AE term by
SOC and treatment arm, and we create a new variable order and set it as 0.
The variable order can help with the data manipulation later.
fmt_num <- function(x, digits, width = digits + 4) {
formatC(
x,
digits = digits,
format = "f",
width = width

)
}

ana <- adae %>%
mutate(
AESOC = tools::toTitleCase(tolower(AESOC)),
AEDECOD = tools::toTitleCase(tolower(AEDECOD))

)

t1 <- ana %>%
group_by(TRTAN, AESOC) %>%
summarise(n = fmt_num(n_distinct(USUBJID), digits = 0)) %>%
mutate(AEDECOD = AESOC, order = 0)

t1
#> # A tibble: 61 x 5
#> # Groups: TRTAN [3]
#> TRTAN AESOC n AEDECOD order
#> <dbl> <chr> <chr> <chr> <dbl>
#> 1 0 Cardiac Disorders " 1~ Cardia~ 0
#> 2 0 Ear and Labyrinth Disorders " ~ Ear an~ 0
#> 3 0 Eye Disorders " ~ Eye Di~ 0
#> 4 0 Gastrointestinal Disorders " 1~ Gastro~ 0
#> 5 0 General Disorders and Administration Site Conditio~ " 2~ Genera~ 0
#> 6 0 Hepatobiliary Disorders " ~ Hepato~ 0
#> 7 0 Infections and Infestations " 1~ Infect~ 0
#> 8 0 Injury, Poisoning and Procedural Complications " ~ Injury~ 0
#> 9 0 Investigations " 1~ Invest~ 0

80 8 Specific AE

#> 10 0 Metabolism and Nutrition Disorders " ~ Metabo~ 0
#> # i 51 more rows

In the code below, we count the number of subjects in each AE term by SOC,
AE term, and treatment arm. Here we also create a new variable order and
set it as 1.
t2 <- ana %>%
group_by(TRTAN, AESOC, AEDECOD) %>%
summarise(n = fmt_num(n_distinct(USUBJID), digits = 0)) %>%
mutate(order = 1)

t2
#> # A tibble: 373 x 5
#> # Groups: TRTAN, AESOC [61]
#> TRTAN AESOC AEDECOD n order
#> <dbl> <chr> <chr> <chr> <dbl>
#> 1 0 Cardiac Disorders Atrial Fibrillation " 1" 1
#> 2 0 Cardiac Disorders Atrial Hypertrophy " 1" 1
#> 3 0 Cardiac Disorders Atrioventricular Block First Degree " 1" 1
#> 4 0 Cardiac Disorders Atrioventricular Block Second Degree " 2" 1
#> 5 0 Cardiac Disorders Bradycardia " 1" 1
#> 6 0 Cardiac Disorders Bundle Branch Block Left " 1" 1
#> 7 0 Cardiac Disorders Bundle Branch Block Right " 1" 1
#> 8 0 Cardiac Disorders Cardiac Failure Congestive " 1" 1
#> 9 0 Cardiac Disorders Myocardial Infarction " 4" 1
#> 10 0 Cardiac Disorders Sinus Arrhythmia " 1" 1
#> # i 363 more rows

We prepare reporting data for AE information using code below:
t_ae <- bind_rows(t1, t2) %>%
pivot_wider(
id_cols = c(AESOC, order, AEDECOD),
names_from = TRTAN,
names_prefix = "n_",
values_from = n,
values_fill = fmt_num(0, digits = 0)

) %>%
arrange(AESOC, order, AEDECOD) %>%
select(AESOC, AEDECOD, starts_with("n"))

t_ae
#> # A tibble: 265 x 5
#> AESOC AEDECOD n_0 n_54 n_81
#> <chr> <chr> <chr> <chr> <chr>

8 Specific AE 81

#> 1 Cardiac Disorders Cardiac Disorders " 13" " 13" " 18"
#> 2 Cardiac Disorders Atrial Fibrillation " 1" " 1" " 3"
#> 3 Cardiac Disorders Atrial Flutter " 0" " 1" " 1"
#> 4 Cardiac Disorders Atrial Hypertrophy " 1" " 0" " 0"
#> # i 261 more rows

We prepare reporting data for analysis population using code below:
count_by <- function(data, # Input data set

grp, # Group variable
var, # Analysis variable
var_label = var, # Analysis variable label
id = "USUBJID") { # Subject ID variable

data <- data %>% rename(grp = !!grp, var = !!var, id = !!id)

left_join(
count(data, grp, var),
count(data, grp, name = "tot"),
by = "grp",

) %>%
mutate(
pct = fmt_num(100 * n / tot, digits = 1),
n = fmt_num(n, digits = 0),
npct = paste0(n, " (", pct, ")")

) %>%
pivot_wider(
id_cols = var,
names_from = grp,
values_from = c(n, pct, npct),
values_fill = list(n = "0", pct = fmt_num(0, digits = 0))

) %>%
mutate(var_label = var_label)

}

t_pop <- adsl %>%
filter(SAFFL == "Y") %>%
count_by("TRT01AN", "SAFFL",
var_label = "Participants in population"

) %>%
mutate(
AESOC = "pop",
AEDECOD = var_label

) %>%
select(AESOC, AEDECOD, starts_with("n_"))

t_pop

82 8 Specific AE

#> # A tibble: 1 x 5
#> AESOC AEDECOD n_0 n_54 n_81
#> <chr> <chr> <chr> <chr> <chr>
#> 1 pop Participants in population " 86" " 84" " 84"

The final report data is saved in tbl_ae_spec. We also add a blank row
between population and AE information in the reporting table.
tbl_ae_spec <- bind_rows(
t_pop,
data.frame(AESOC = "pop"),
t_ae

) %>%
mutate(AEDECOD = ifelse(AEDECOD == AESOC,
AEDECOD, paste0(" ", AEDECOD)

))

tbl_ae_spec
#> # A tibble: 267 x 5
#> AESOC AEDECOD n_0 n_54 n_81
#> <chr> <chr> <chr> <chr> <chr>
#> 1 pop " Participants in population" " 86" " 84" " 84"
#> 2 pop <NA> <NA> <NA> <NA>
#> 3 Cardiac Disorders "Cardiac Disorders" " 13" " 13" " 18"
#> 4 Cardiac Disorders " Atrial Fibrillation" " 1" " 1" " 3"
#> # i 263 more rows

We define the format of the output as below:

To obtain the nested layout, we use the page_by argument in the rtf_body
function. By defining page_by="AESOC", r2rtf recognizes the variable as a
group indicator.

After setting pageby_row = "first_row", the first row is displayed as group
header. If a group of information is broken into multiple pages, the group
header row is repeated on each page by default.

We can also customize the text format by providing a matrix that has the
same dimension as the input dataset (i.e., tbl_ae_spec). In the code below,
we illustrate how to display bold text for group headers to highlight the
nested structure of the table layout.
n_row <- nrow(tbl_ae_spec)
n_col <- ncol(tbl_ae_spec)
id <- tbl_ae_spec$AESOC == tbl_ae_spec$AEDECOD
id <- ifelse(is.na(id), FALSE, id)

text_format <- ifelse(id, "b", "")

8 Specific AE 83

tbl_ae_spec %>%
rtf_title(
"Analysis of Participants With Specific Adverse Events",
"(Safety Analysis Population)"

) %>%
rtf_colheader(" | Placebo | Xanomeline Low Dose| Xanomeline High Dose",
col_rel_width = c(3, rep(1, 3))

) %>%
rtf_colheader(" | n | n | n ",
border_top = "",
border_bottom = "single",
col_rel_width = c(3, rep(1, 3))

) %>%
rtf_body(
col_rel_width = c(1, 3, rep(1, 3)),
text_justification = c("l", "l", rep("c", 3)),
text_format = matrix(text_format, nrow = n_row, ncol = n_col),
page_by = "AESOC",
pageby_row = "first_row"

) %>%
rtf_footnote("Every subject is counted a single time for each applicable row and column.") %>%
rtf_encode() %>%
write_rtf("tlf/tlf_spec_ae.rtf")

84 8 Specific AE

Analysis of Participants With Specific Adverse Events
(Safety Analysis Population)

Placebo
Xanomeline Low

Dose
Xanomeline High

Dose
n n n

 Participants in population 86 84 84

Cardiac Disorders 13 13 18
 Atrial Fibrillation 1 1 3
 Atrial Flutter 0 1 1
 Atrial Hypertrophy 1 0 0
 Atrioventricular Block First Degree 1 1 0
 Atrioventricular Block Second Degree 2 0 3
 Bradycardia 1 0 0
 Bundle Branch Block Left 1 0 0
 Bundle Branch Block Right 1 1 0
 Cardiac Disorder 0 0 1
 Cardiac Failure Congestive 1 0 0
 Myocardial Infarction 4 2 4
 Palpitations 0 2 0
 Sinus Arrhythmia 1 0 0
 Sinus Bradycardia 2 7 8
 Supraventricular Extrasystoles 1 1 1
 Supraventricular Tachycardia 0 1 0
 Tachycardia 1 0 0
 Ventricular Extrasystoles 0 2 1
 Ventricular Hypertrophy 1 0 0
 Wolff-Parkinson-White Syndrome 0 1 0
Congenital, Familial and Genetic Disorders 0 1 2
 Ventricular Septal Defect 0 1 2
Ear and Labyrinth Disorders 1 2 1
 Cerumen Impaction 0 1 0
 Ear Pain 1 0 0
 Tinnitus 0 1 0
 Vertigo 0 1 1
Eye Disorders 4 2 1
 Conjunctival Haemorrhage 0 1 0
 Conjunctivitis 2 0 0
 Eye Allergy 1 0 0

More discussion on page_by, group_by and subline_by features can be
found on the r2rtf package website (https://merck.github.io/r2rtf/articles/
example-sublineby-pageby-groupby.html).

The procedure to generate a baseline characteristics table can be summarized
as follows:

• Step 1: Read data (i.e., adae and adsl) into R.

https://merck.github.io/r2rtf/articles/example-sublineby-pageby-groupby.html
https://merck.github.io/r2rtf/articles/example-sublineby-pageby-groupby.html

8 Specific AE 85

• Step 2: Count the number of participants by SOC and treatment arm
(rows with bold text) and save into t1.

• Step 3: Count the number of participants in each AE term by SOC, AE
term, and treatment arm (rows without bold text) and save into t2.

• Step 4: Bind t1 and t2 by row into t_ae.
• Step 5: Count the number of participants in each arm as t_pop.
• Step 6: Row-wise combine t_pop and t_ae into tbl_ae_spec.
• Step 7: Format the output by using r2rtf.

Chapter 9

Assemble TLFs

library(r2rtf)

After TLFs are created and saved into individual files, we need to assemble
them into one file in a pre-specified order.

There are two general approaches to achieving the goal.

1. Combine RTF source code in individual files into one large RTF file.
2. Leverage the Toggle Fields feature in Microsoft Word to embed RTF

files using hyperlinks.

Let’s illustrate the idea by using selected TLFs generated from previous chap-
ters. Here, we assume files are saved in the tlf/ folder.
tlf_path <- c(
"tlf/tbl_disp.rtf", # Disposition table
"tlf/tlf_eff.rtf", # Efficacy table
"tlf/tlf_km.rtf" # K-M plot

)

87

88 9 Assemble TLFs

Disposition of Participants

Placebo Xanomeline Low Dose Xanomeline High Dose

n (%) n (%) n (%)

Participants in population 86 84 84
Completed 58 67.4 25 29.8 27 32.1
Discontinued 28 32.6 59 70.2 57 67.9
 Adverse Event 8 9.3 44 52.4 40 47.6
 Death 2 2.3 1 1.2 0 0.0
 I/E Not Met 1 1.2 0 0.0 2 2.4
 Lack of Efficacy 3 3.5 0 0.0 1 1.2
 Lost to Follow-up 1 1.2 1 1.2 0 0.0
 Physician Decision 1 1.2 0 0.0 2 2.4
 Protocol Violation 1 1.2 1 1.2 1 1.2
 Sponsor Decision 2 2.3 2 2.4 3 3.6
 Withdrew Consent 9 10.5 10 11.9 8 9.5

9.2 Using Toggle Fields 89

9.1 Combine RTF Source Code

Note

The code below requires r2rtf version >= 1.0.0.

The r2rtf::assemble_rtf() function allows the user to combine RTF
source code in individual files into one larger RTF file.

Caution

One limitation of combining RTF source code is that we are not able
to specify the page orientation of each TLF in the combined document.

r2rtf::assemble_rtf(
input = tlf_path,
output = "tlf/rtf-combine.rtf"

)

9.2 Using Toggle Fields

Microsoft Word uses toggle fields to embed files into one Word document.
The approach is a dynamic link between files by providing the absolute file
path.

Tip

There is a slight learning curve on how toggle fields work in Microsoft
Word. After you become familiar with the workflow, toggle fields can
extend your capability to manage a large number of TLFs in RTF for-
mat.

The assemble_docx() function allows you to create a .docx file with toggle
fields as below. One benefit is to control the page direction of each TLF as
below.
r2rtf::assemble_docx(
tlf_path,
output = "tlf/rtf-combine-toggle.docx",
landscape = c(FALSE, FALSE, TRUE)

)

90 9 Assemble TLFs

After opening the generated .docx file, you will see a blank file because the
file only contains fields with hyperlinks.

By using Alt + F9 to display the fields and you will see information similar
to the screenshot below.

Figure 9.1: Using Alt + F9 to display fields

Tip

A typical error message is that system can not find the file if you only
provide a relative path. Please double-check that the correct absolute
file path is in the INCLUDETEXT field.

To test the toggle field, you can right-click an INCLUDETEXT filed and click
Update Field.

If it works, you can see a table similar to the snapshot below by using Alt +
F9. It is a shortcut to change between results and field display mode.

9.2 Using Toggle Fields 91

Figure 9.2: Update fields

Now you can update all toggle fields to display all TLFs by selecting all fields
(Ctrl + A), then press F9. We suggest testing one toggle field before updating
all of them.

As the .docx file contain dynamic links, you can keep updating the TLFs if
you need to refresh content in individual RTF files by selecting all fields (Ctrl
+ A), then press F9.

Tip

If you modify table content in the combined .docx file, you may get
a weird table layout if you update all fields within a toggle field. To
resolve the issue, please remove all * MERGEFORMAT in the filed mode
using Alt + F9 before updating all toggle fields.

After the combined TLF is ready for delivery, you can also unlink toggle fields
to save table contents, because the absolute path may only work for some.
To unlink toggle fields, you can select all fields (Ctrl + A), then press Ctrl +
Shift + F9.

Part II
Clinical trial project

Chapter 10

Overview

In a late-stage clinical trial, the number of A&R deliverables can easily be
in the hundreds. For an organization, it is common to have multiple ongoing
clinical trials in a clinical program.

To deliver the A&R results of a clinical trial project, it is teamwork that
typically requires collaborations from both statisticians and programmers. In
this part, let’s consider how to organize a clinical trial project as an A&R
lead.

Chapter 11 will discuss how to organize source code, documents, and deliver-
ables in an A&R clinical project. We recommend using the R package folder
structure.

Chapter 12 will discuss a process or system development lifecycle to manage
the A&R of a clinical project. We recommend following an agile management
approach to define, develop, validate, and deliver work.

95

Chapter 11

Project folder

A clearly defined clinical project folder structure can have many benefits
to clinical development teams in an organization. Specifically, a well-defined
project structure can achieve:

• Consistency: everyone works on the same folder structure.
• Reproducibility: analysis can be executed and reproduced by different

team members months/years later.
• Automation: automatically check the integration of a project.
• Compliance: reduce compliance issues.

We will use the esubdemo (https://github.com/elong0527/esubdemo) R
package to illustrate the project folder structure for the A&R project.
You can clone (https://happygitwithr.com/rstudio-git-github.html#clone-
the-new-github-repository-to-your-computer-via-rstudio) the project using
RStudio IDE with
git clone https://github.com/elong0527/esubdemo.git

For R users, you already benefit from a well-defined and consis-
tent folder structure. That is the R package folder structure (https:
//github.com/rstudio/cheatsheets/blob/main/package-development.pdf).
Every R package developer is required to follow the same convention to
organize their R functions before the R package can be disseminated through
the Comprehensive R Archive Network (CRAN). As a user, you can easily
install and use those R packages after downloading from CRAN. There are
many good resources to guide developers on R package development, such
as, the R Packages book (https://r-pkgs.org/) by Hadley Wickham.

We recommend using the R package folder structure to organize analysis
scripts for clinical trial development. Using the R package folder structure
to streamline data analysis work has also been proposed before (see Marwick
et al. [2018], Wu et al. [2021]).

97

https://github.com/elong0527/esubdemo
https://happygitwithr.com/rstudio-git-github.html#clone-the-new-github-repository-to-your-computer-via-rstudio
https://happygitwithr.com/rstudio-git-github.html#clone-the-new-github-repository-to-your-computer-via-rstudio
https://github.com/rstudio/cheatsheets/blob/main/package-development.pdf
https://github.com/rstudio/cheatsheets/blob/main/package-development.pdf
https://r-pkgs.org/

98 11 Project folder

11.1 Consistency

For consistency, a well-defined folder structure with potential templates en-
sures project teams organize the A&R work consistently across multiple
projects. Consistent folder structure also reduces communication costs be-
tween study team members and enhances the transparency of projects.

In this book, we refer to an R package as a project-specific R package
if the purpose of an R package is to organize analysis scripts for a clinical
project.

We refer to an R package as a standard R package if the purpose of an
R package is to share commonly used R functions to be hosted in a code
repository such as CRAN.

Below is minimal sufficient folders and files for a project-specific R package
based on the R package folder structure.

• *.Rproj: RStudio project file used to open RStudio project.
• DESCRIPTION: Metadata for a package including authors, license, depen-

dencies, etc.
• R/: Project-specific R functions.
• vignettes/: Analysis scripts using R Markdown.
• man/: Manual of project-specific R functions.

A general discussion of the R package folder structure can be found in Chapter
3 of the R Packages (https://r-pkgs.org/structure.html) book [Wickham and
Bryan, 2023].

We demonstrate the idea using the esubdemo (https://github.com/
elong0527/esubdemo) project.

In the esubdemo project, we saved all TLF generation scripts in previous
chapters into the vignettes/ folder.

Note

Under the vignettes/ folder, there are two folders: adam/ and tlf/.
The adam/ folder contains ADaM datasets. The tlf/ folder contains
output TLFs in RTF format. We put adam/ and tlf/ folders within
the vignettes/ folder only for illustration purposes. In an actual A&R
report, you may have a different location to save your input and output.

vignettes
��� data-adam
��� tlf
��� tlf-01-disposition.Rmd
��� tlf-02-population.Rmd

https://r-pkgs.org/structure.html
https://github.com/elong0527/esubdemo
https://github.com/elong0527/esubdemo

11.1 Consistency 99

��� tlf-03-baseline.Rmd
��� tlf-04-efficacy.Rmd
��� tlf-05-ae-summary.Rmd
��� tlf-06-ae-spec.Rmd

While creating those analysis scripts, we also defined a few helper functions
(e.g., fmt_num and count_by). Those functions are saved in the R/ folder.

R/
��� count_by.R
��� fmt.R

For a clinical trial project, it is also important to provide proper doc-
umentation for those help functions. We use roxygen2 package to docu-
ment functions. For example, the header below defines each variable in
fmt_est. More details can be found in Chapter 16 of the R Packages book
(https://r-pkgs.org/man.html).
#' Format point estimator
#'
#' @param .mean mean of an estimator.
#' @param .sd sd of an estimator.
#' @param digits number of digits for `.mean` and `.sd`.
#'
#' @export
fmt_est <- function(.mean, .sd, digits = c(1, 2)) {
.mean <- fmt_num(.mean, digits[1], width = digits[1] + 4)
.sd <- fmt_num(.sd, digits[2], width = digits[2] + 3)
paste0(.mean, " (", .sd, ")")

}

The roxygen2 documentation will be converted into standard R documenta-
tion format, and saved as .Rd files in the man/ folder. This step is automati-
cally handled by devtools::document().

man
��� count_by.Rd
��� fmt_ci.Rd
��� fmt_est.Rd
��� fmt_num.Rd
��� fmt_pval.Rd

The man/ folder is used to save documentation automatically generated by
roxygen2. A typical workflow is to add roxygen2 documentation before each
function in the R/ folder. Then devtools::document() is used to generate
all the documentation files in the man/ folder. More details can be found in
Chapter 16 of the R Packages book (https://r-pkgs.org/man.html).

https://r-pkgs.org/man.html
https://r-pkgs.org/man.html

100 11 Project folder

11.2 Reproducibility

Reproducibility of analysis is one of the most important aspects of regulatory
deliverables. To ensure a successful reproduction, we need a controlled R en-
vironment, including the control of the R version and the R package versions.
By using the R package folder structure and proper tools (e.g., renv, packrat),
we illustrate how to achieve reproducibility for R and R package versions.

Tip

This is the same level of reproducibility in most SAS environ-
ments: https://support.sas.com/en/technical-support/services-policies.
html#altos

11.2.1 R version

First, we introduce the control of the R version. In the esubdemo project,
a reproducible environment is created when you open the esubdemo.Rproj
from RStudio IDE. When we open the esubdemo project, RStudio IDE will
execute the R code in .Rprofile automatically. So we can use .Rprofile
to set up a reproducible environment. More details can be found in https:
//rstats.wtf/r-startup.html. After we open the esubdemo project, the code in
.Rprofile will automatically check the current R version is the same as we
defined in .Rprofile.
Set project R version
R_version <- "4.1.1"

If there is an R version mismatch, an error message is displayed as below.

Error: The current R version is not the same as the current project in R4.1.1

Caution

.Rprofile is only for project-specific R packages. A standard R pack-
age should not use .Rprofile.

https://support.sas.com/en/technical-support/services-policies.html#altos
https://support.sas.com/en/technical-support/services-policies.html#altos
https://rstats.wtf/r-startup.html
https://rstats.wtf/r-startup.html

11.2 Reproducibility 101

11.2.2 R package version

Next, we introduce the control of the R package version, which is controlled
in two layers. Firstly, we define a snapshot date in .Rprofile. The snapshot
date allows us to freeze the source code repository.
set up snapshot date
snapshot <- "2021-08-06"

set up repository based on the snapshot date
repos <- paste0("https://packagemanager.posit.co/cran/", snapshot)

define repo URL for project-specific package installation
options(repos = repos)

We can also define the package repository to be a specific snapshot date. For
example, we used Posit Public Package Manager to define the snapshot date
to be 2021-08-06. The snapshot date freezes the R package repository.

In other words, all R packages installed in this R project are based on the
frozen R version at the snapshot date. Here it is 2021-08-06 by using the
Posit Package Manager.

The information below will be displayed after a new R session is opened.

Current project R package repository:
https://packagemanager.posit.co/cran/2021-08-06

Note

Posit Public Package Manager (https://packagemanager.posit.co/)
hosts daily CRAN snapshots for Mondays to Fridays of the week. Posit
Package Manager, when deployed internally within an organization,
provides a solution to host both publicly available and internally devel-
oped R packages.

Secondly, we use renv to lock R package versions and save them in the
renv.lock file. renv provides a robust and stable approach to managing R
package versions for project-specific R packages. An introduction of renv can
be found on its website (https://rstudio.github.io/renv/articles/renv.html).
source("renv/activate.R")

The R code above in the .Rprofile initiates the renv running environ-
ment. As a user, you can use renv::init(), renv::snapshot(), and
renv::restore() to initialize, save and restore R packages used for the
current analysis project.

https://packagemanager.posit.co/
https://rstudio.github.io/renv/articles/renv.html

102 11 Project folder

In the analysis project, the renv package will

• create a renv.lock file to save the state of package versions.
• create a renv/ folder to manage R packages for a project.

Caution

The renv.lock file and renv/ folder are only for project-specific R
package. A standard R package should not use renv.

In summary, the R package version is controlled in two layers.

• Define a snapshot date in inst/startup.R.
• Using renv to lock R versions within a project.

If the project is initiated properly, you should be able to see similar messages
to inform how we control R package versions.

* Project '~/esubdemo' loaded. [renv 0.14.0]

Once R packages have been properly installed, the system will use the R pack-
ages located in the search path defined based on the order of .libPaths().
The startup message also provided the R package search path.

Below R package path are searching in order to find installed R packages in this R session:
"/home/zhanyilo/github-repo/esubdemo/renv/library/R-4.1/x86_64-pc-linux-gnu"
"/rtmp/RtmpT3ljoY/renv-system-library"

Tip

A cloud-based R environment (e.g., Posit Workbench (https://posit.
co/products/enterprise/workbench/)) can enhance the reproducibility
within an organization by using the same operating system, R version,
and R package versions for an A&R project. More details can be found
at https://environments.rstudio.com/.

Note

A container solution like Docker [Nüst et al., 2020] could further en-
hance the reproducibility across an organization at the operating sys-
tem level but beyond the scope of this book.

In conclusion, to achieve reproducibility for a project-specific R package, a
clinical project team can work under a controlled R environment in the same
R version and R package versions defined by a repository snapshot date.

https://posit.co/products/enterprise/workbench/
https://posit.co/products/enterprise/workbench/
https://environments.rstudio.com/

11.3 Automation 103

11.3 Automation

By using the R package folder structure, you will benefit from many out-
standing tools to simplify and streamline your workflow.

We have learned a few functions in devtools to generate content automati-
cally. Here is a list of tools that can enhance the workflow.

• devtools (https://devtools.r-lib.org/): make package development easier.
– A good overview can be found in Chapter 2 of the R Packages book

(https://r-pkgs.org/Whole-game.html).
– devtools::load_all(): load all functions in R/ folder and running

environment.
– devtools::document(): automatically create documentation using rox-

ygen2.
– devtools::check(): automatically perform compliance check as an R

package.
– devtools::build_site(): automatically run analysis scripts in batch

and create a pkgdown website.
• usethis (https://usethis.r-lib.org/): automates repetitive tasks that arise

during project setup and development.
• testthat (https://testthat.r-lib.org/): streamline testing code.

– A discussion of using the testthat for an A&R project can be found in
(Ginnaram et al. [2021]).

• pkgdown (https://pkgdown.r-lib.org/): generate static HTML documen-
tation website for an R package
– It also allows you to run all analysis code in batch.

You may further automatically execute routines by leveraging CI/CD work-
flow. For example, the esubdemo project will rerun all required checks
and build a pkgdown website by using Github Actions (https://usethis.r-
lib.org/reference/github_actions.html).

As the consistent folder is defined, it also becomes easier to create specific
tools that fit the analysis and reporting purpose. Below are a few potential
tools that can be helpful:

• Create project template using RStudio project templates (https://rstudio.
github.io/rstudio-extensions/rstudio_project_templates.html);

• Add additional compliance checks for analysis and reporting;
• Save log files for running in batch.

https://devtools.r-lib.org/
https://r-pkgs.org/Whole-game.html
https://usethis.r-lib.org/
https://testthat.r-lib.org/
https://pkgdown.r-lib.org/
https://usethis.r-lib.org/reference/github_actions.html
https://usethis.r-lib.org/reference/github_actions.html
https://rstudio.github.io/rstudio-extensions/rstudio_project_templates.html
https://rstudio.github.io/rstudio-extensions/rstudio_project_templates.html

104 11 Project folder

11.4 Compliance

For a regulatory deliverable, it is important to maintain compliance. With
a consistent folder structure, we can define specific criteria for compliance.
Some compliance criteria can be implemented within the automatically check-
ing steps.

For an R package, there are already criteria to ensure R package integrity.
More details can be found in Chapter 20 of the R Packages book (https://r-
pkgs.org/check.html).

https://r-pkgs.org/check.html
https://r-pkgs.org/check.html

Chapter 12

Project management

12.1 Setting up for success

A clinical data analysis project is not unlike typical data analysis projects or
software projects. Therefore, the conventional wisdom and tricks for manag-
ing a successful project are also applicable here. At the same time, clinical
projects also have unique traits, such as high standards for planning, devel-
opment, validation, and delivery under strict time constraints.

Although many factors determine if a project can execute efficiently, we be-
lieve a few aspects are critical for long-term success, especially when manag-
ing clinical data analysis projects at scale.

12.1.1 Work as a team

As a general principle, all the team members involved in a project should
take basic training on project management and understand how to work as
a development team. Fitzpatrick and Collins-Sussman [2012] provides some
valuable tips on this topic. As always, setting a clear goal and following a
system development lifecycle (SDLC) is essential.

12.1.2 Design clean code architecture

Having a clean architecture design for your code improves the project’s robust-
ness and flexibility for future changes. For example, we should understand
how to separate business logic from other layers; know what should be cre-
ated as reusable components and what should be written as one-off analysis

105

106 12 Project management

scripts; write low coupling, high cohesion code, and so on. Martin et al. [2018]
offers some helpful insights on this topic.

12.1.3 Set capability boundaries

Knowing what you can do is essential. Create a core capabilities list for your
team.

Sometimes, it is also critical to understand what not to do. For example,
the hidden cost of integrating with external systems or involving other pro-
gramming languages can be prohibitively high. Remember, a simple, robust
solution is almost always preferable to a complex solution that requires high
maintenance and constant attention.

12.1.4 Contribute to the community

Every individual is limited in some way. The collective thinking from a com-
munity could benefit a project in the long term. When designing reusable
components, make a plan to share with internal communities, or even better,
with the open-source community.

12.2 The SDLC

For A&R deliverables in clinical project development, a clearly defined pro-
cess or system development lifecycle (SDLC) is crucial to ensure regulatory
compliance.

SDLC for the A&R deliverables can be defined in four stages.

• Planning: a planning stage to define the scope of a project.
• Development: a development stage to implement target deliverables.
• Validation: a validation stage to verify target deliverables.
• Operation: an operation stage to deliver work to stakeholders.

Importantly, we should not consider SDLC as a linear process. For example,
if the study team identifies a new requirement in a development or validation
stage, the team should return to the planning stage to discuss and align
the scope. An agile project management (https://www.atlassian.com/agile/
project-management) approach is suitable and recommended for an A&R
clinical development project. The goal is to embrace an iterative approach

https://www.atlassian.com/agile/project-management
https://www.atlassian.com/agile/project-management

12.3 Planning 107

that continuously improves target deliverables based on frequent stakeholder
feedback.

There are many good tools to implement agile project management strategy,
for example:

• GitHub project board (https://docs.github.com/en/issues/organizing-
your-work-with-project-boards/managing-project-boards/about-project-
boards)

• Jira (https://www.atlassian.com/software/jira)

12.3 Planning

The planning stage is important in the SDLC lifecycle as the requirements
for all A&R deliverables are gathered and documented.

In the planning stage, a project leader should identify all the deliverables,
e.g., a list of tables, listings, and figures (TLFs). For each TLFs, the team
should prepare the necessary specifications:

• mock-up tables
• validation level (e.g., independent review or double programming)
• etc.

The project leader should also align work assignments with team members.
The purpose is to answer the question of “who is doing what?”

Warning in ensure_len_latex(background, nrows, off, include_thead, "white", :
The number of provided values in background does not equal to the number of
rows.
Warning in ensure_len_latex(background, nrows, off, include_thead, "white", :
The number of provided values in background does not equal to the number of
rows.
Warning in ensure_len_latex(background, nrows, off, include_thead, "white", :
The number of provided values in background does not equal to the number of
rows.

The project lead should also set up a project folder, as discussed
in Chapter 11. The project initiation can be simplified by creat-
ing an RStudio project template (https://rstudio.github.io/rstudio-
extensions/rstudio_project_templates.html).

To enable reproducibility, the project leader should also review the startup
file (i.e. .Rprofile discussed in Section 11.2) and define:

• R version
• Repository of R packages with a snapshot date

https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards
https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards
https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards
https://www.atlassian.com/software/jira
https://rstudio.github.io/rstudio-extensions/rstudio_project_templates.html
https://rstudio.github.io/rstudio-extensions/rstudio_project_templates.html

108 12 Project management

 Requirement/Specification Developer Testing Independent Testing
Program Name Program Validation Category Who Status Who Status Who Status

count_by 3 Alice C Alice C Bob C
fmt_ci 3 Alice C Alice C Carol C
fmt_est 3 Alice C Alice C Bob C
fmt_num 3 Alice C Alice C Carol C
fmt_pval 3 Alice C Alice C Dave C
tlf-01-disposition.Rmd 3 Bob C Bob C Carol I
tlf-02-population.Rmd 3 Carol C Carol C Dave I
tlf-03-baseline.Rmd 3 Dave C Dave C Bob C
tlf-04-efficacy.Rmd 3 Alice C Alice C Carol C
tlf-05-ae-summary.Rmd 3 Bob C Bob C Dave I
tlf-06-ae-spec.Rmd 3 Carol C Carol C Bob C

• Project package library path
• etc.

Caution

After project initiation, modifying .Rprofile will be a risk for repro-
ducibility and should be handled carefully if necessary.

12.4 Development

After a project is initiated, the study team starts to develop TLFs based on
pre-defined mock-up tables assigned to each team member.

The analysis code and relevant description can be saved in R Markdown files
in the vignettes/ folder.

The use of R Markdown allows developers to assemble narrative text, code,
and its comments in one place to simplify documentation. It would be helpful
to create a template and define a name convention for all TLFs deliverables.
For example, we can use the tlf_ prefix in the filename to indicate that the

12.5 Validation 109

R Markdown file is for delivering TLFs. Multiple TLFs with similar designs
can be included in one R Markdown file.

For example, in the esubdemo project, we have six R Markdown files to create
TLFs.

If there are any project-specific R functions that need to be developed, the
R functions can be placed in the R/ folder as discussed in Section 11.1.

12.5 Validation

Validation is a crucial stage to ensure the deliverables are accurate and con-
sistent. After the development stage is completed, the project team needs to
validate the deliverables, including R Markdown files for TLFs deliverables
and project-specific R functions. The level of validation is determined at the
define stage.

In an R package development, the validation or testing is completed under the
test/ folder. The testthat R package can be used to streamline the validation
process. More details of the testthat package for R package validation can
be found in Chapter 12 of the R package book (https://r-pkgs.org/testing-
basics.html).

It is recommended to have a name convention to indicate the
type of validation. For example, we can use test-developer-test,
test-independent-test, test-double-programming to classify the
validation type.

It is recommended to follow the same organization for files in testthat folder
as R/ folder and vignettes/ folder. Every single file in the R/ folder and
vignettes/ folder should have a testing file saved in the tests/testthat/
folder to validate the content.

For example, in esubdemo project, we can have a list of testing files below.

tests/testthat
��� test-independent-test-tlf-01-disposition.R
��� test-independent-test-tlf-02-population.R
��� test-independent-test-tlf-03-baseline.R
��� test-independent-test-tlf-04-efficacy.R
��� test-independent-test-tlf-05-ae-summary.R
��� test-independent-test-tlf-06-ae-spec.R
��� test-independent-test-fmt.R

To validate the content of a table, we can save the last datasets ready for
table generation as a .Rdata file. A validator can reproduce the TLF and
compare it with the original result saved in the .Rdata file. A test is passed

https://r-pkgs.org/testing-basics.html
https://r-pkgs.org/testing-basics.html

110 12 Project management

when the results match. Customers can directly review the formatting of the
TLFs by comparing them with the mock-up.

To validate a figure, we can use the snapshot testing (https://testthat.r-lib.
org/articles/snapshotting.html) strategy.

After the validator completes the testing of project-specific functions and R
Markdown files, the process to execute and report testing results is the same
for a standard R package. The devtools::test() function automatically
executes all testing cases and summarizes the testing results in a report.

After completing the validation, the validator updates the status in a vali-
dation tracker. The project lead reviews the tracking sheet to make sure all
required activities in the SDLC are completed, and the tracking sheet has
been filled correctly. The deliverables are ready for customer review after all
the validation steps are completed. Any changes to the output requested by
customers are documented.

12.6 Operation

After completion of development and required validation of all A&R deliver-
ables, the project lead runs compliance checks for a project-specific R package
similar to other R packages. devtools::check() is a convenient way to run
compliance checks or R CMD check. R CMD check is an automated check of
the contents in the R package for frequently encountered issues before sub-
mission to CRAN. Since the project-specific R package is not submitted to
CRAN, some checks can be customized and skipped in devtools::check().
The project lead should work with the study team to ensure all reported
errors, warnings, and notes by devtools::check() are fixed.

The project lead can also use the R package pkgdown to build a complete
website for a project-specific R package. The pkgdown website is a con-
venient way to run all analyses in batch and integrate outputs in a web-
site, which comprehensively covers project-specific R functions, TLF gener-
ation programs, outputs and validation tracking information, etc. For ex-
ample, in the esubdemo project, we created the pkgdown website at https:
//elong0527.github.io/esubdemo/.

Many of the tasks in SDLC can be completed automatically. An or-
ganization can leverage CI/CD workflow to automatically enable those
tasks, such as running testing cases and creating a pkgdown web-
site. For example, in the esubdemo project, we set up GitHub Actions
(https://github.com/elong0527/esubdemo/actions) for it. This can be done
by using usethis::use_github_action().

https://testthat.r-lib.org/articles/snapshotting.html
https://testthat.r-lib.org/articles/snapshotting.html
https://elong0527.github.io/esubdemo/
https://elong0527.github.io/esubdemo/
https://github.com/elong0527/esubdemo/actions

Part III
eCTD submission

Chapter 13

Overview

The electronic Common Technical Document (eCTD) is a standard format
for the electronic submission of applications, amendments, supplements, and
reports from the applicant to the regulator. The eCTD offers a solution to
submit documents stored in a standard directory structure, with file integrity
validation mechanisms in place.

To submit TLFs created by R to regulatory agencies, we should follow the
spirit of the existing eCTD submission guidelines to prepare the deliverables,
and provide the essential details in the relevant documents for review.

The goal of the following two chapters is to provide guidance to follow Section
4.1.2.10 of the FDA Study Data Technical Conformance Guide (https://www.
fda.gov/media/88173/download):

Sponsors should provide the software programs used to create all ADaM datasets
and generate tables and figures associated with primary and secondary
efficacy analyses. Furthermore, sponsors should submit software programs used
to generate additional information included in Section 14 CLINICAL STUDIES
of the Prescribing Information (PI)26 if applicable. The specific software uti-
lized should be specified in the ADRG. The main purpose of requesting the
submission of these programs is to understand the process by which the
variables for the respective analyses were created and to confirm the
analysis algorithms. Sponsors should submit software programs in ASCII text
format; however, executable file extensions should not be used.

Chapter 14 will focus on preparing proprietary R packages and analysis code
into proper formats for submission.

Chapter 15 will discuss the recommendations to make the R code running
environment reproducible for dry run tests and reviews.

113

https://www.fda.gov/media/88173/download
https://www.fda.gov/media/88173/download

Chapter 14

Submission package

In this chapter, we will first give a high-level overview of what assets in
the eCTD submission package we should focus on when submitting R code.
Then, we will discuss how to prepare the proprietary R packages (if any), and
make them be part of the submission package. In the end, we will provide
reusable templates for updating Analysis Data Reviewer’s Guide (ADRG)
and Analysis Results Metadata (ARM) so that the reviewers receive proper
instructions to reproduce the analysis results.

14.1 Prerequisites

This chapter uses pkglite [Zhao et al., 2023] to convert R source packages
into text files and back.
install.packages("pkglite")

The demo project (R package) we will prepare for submission is called
esubdemo (https://github.com/elong0527/esubdemo), which is available on
GitHub. You can download or clone it:
git clone https://github.com/elong0527/esubdemo.git

The demo submission package (not to be confused with the R package above)
is ectddemo (https://github.com/elong0527/ectddemo), which is also avail-
able on GitHub. You can download or clone it:
git clone https://github.com/elong0527/ectddemo.git

We assume the paths to the two folders are esubdemo/ and ectddemo/ below.

115

https://github.com/elong0527/esubdemo
https://github.com/elong0527/ectddemo

116 14 Submission package

14.2 The whole game

In eCTD deliverable, the analysis datasets and source code are saved under
the eCTD module 5 (clinical study reports) folder

ectddemo/m5/datasets/<study>/analysis/adam/

The files in two directories within the adam/ folder are critical for document-
ing analysis using R: datasets/ and programs/.

ectddemo/m5/datasets/ectddemo/analysis/adam/
��� datasets
� ��� adae.xpt
� ��� ...
� ��� adrg.pdf
� ��� analysis-results-metadata.pdf
� ��� define.xml
� ��� define2-0-0.xsl
��� programs

��� r0pkgs.txt
��� tlf-01-disposition.txt
��� tlf-02-population.txt
��� tlf-03-baseline.txt
��� tlf-04-efficacy.txt
��� tlf-05-ae-summary.txt
��� tlf-06-ae-spec.txt

The special considerations for each component are listed below.

14.2.1 datasets

Folder path: ectddemo/m5/datasets/ectddemo/analysis/adam/datasets/.

• ADaM data in .xpt format: created by SAS or R.
• define.xml: created by Pinnacle 21.
• ADRG (Analysis Data Reviewer’s Guide)

– “Macro Programs” section: provide R and R package versions with a
snapshot date.

– Appendix: provide step-by-step instructions for reviewers to reproduce
the running environment and rerun analyses.

• ARM (Analysis Results Metadata): provide the links between TLFs and
analysis programs in tables.

14.3 Practical considerations for R package submissions 117

14.2.2 programs

Folder path: ectddemo/m5/datasets/ectddemo/analysis/adam/programs/.

• r0pkgs.txt: contains all internally developed proprietary R packages.
• Other .txt files: each contains R code for a specific analysis.

14.2.3 Notes

To verify if the submission package works, rerun all analyses following the
instructions defined in ADRG.

A few things need to be paid attention to in order to pass compliance checks:

• The file names under programs/ should be in lower case letters (with no
underscores or other special characters).

• The .txt files should only contain ASCII characters. This can be verified
by pkglite::verify_ascii()

• All .docx files should be converted to PDF files for formal submission.

Now you have a general idea about the relevant components of the submission
package. We will prepare the proprietary R packages in the following sections.

14.3 Practical considerations for R package submissions

Before we start, there are a few aspects to figure out in order to accurately
identify the R packages for submission.

14.3.1 Source location

There are a few common places to host R (source) packages:

1. CRAN
2. Public Git repository
3. Private Git repository (accessible externally)
4. Private Git repository (inaccessible externally)

For R packages hosted on CRAN or a public Git repository, you probably do
not need to submit them as part of the submission package, as the reviewers
can install them directly by following the instructions in ADRG.

118 14 Submission package

For R packages hosted in private repositories, to avoid any complications in
infrastructure, authentication, and communication, it is often recommended
to submit them as part of the submission package.

14.3.2 Dependency locations

R package dependency is another major factor to consider before preparing
your proprietary R package for submission.

For dependencies available from CRAN or public Git repositories, you can
declare them directly using the regular Imports and Suggests syntax or the
remotes dependency syntax (https://remotes.r-lib.org/articles/dependencies.
html) in the DESCRIPTION file.

For dependencies hosted in private Git repositories, you should pack them
with the primary R package(s) you want to submit, as pkglite supports pack-
ing multiple R packages into a single text file; then restore and install them
in the order they are packed.

14.3.3 R version

Always use a consistent version of R for developing the TLFs and for sub-
mission. For example, you could enforce a rule to only use R x.y.z where
z = 1, such as R 4.0.1 or R 4.1.1. This can be automatically checked us-
ing a startup script (https://github.com/elong0527/esubdemo/blob/master/
inst/startup.R) when the R project is opened.

14.3.4 Package repo version

Always use the same snapshot package repo for developing the TLFs and
for submission. Again, this can be checked in the project startup script, as
discussed in Section 11.2.

14.3.5 System environments

Introducing any extra external dependencies will likely increase the cost of
qualification, validation, testing, and maintenance, especially under Windows.

https://remotes.r-lib.org/articles/dependencies.html
https://remotes.r-lib.org/articles/dependencies.html
https://github.com/elong0527/esubdemo/blob/master/inst/startup.R
https://github.com/elong0527/esubdemo/blob/master/inst/startup.R

14.4 Prepare R packages for submission 119

Therefore, it is recommended to keep the dependency chain simple, especially
when involving compiled code (e.g., C, C++, Fortran).

14.4 Prepare R packages for submission

To prepare R packages for submission, one needs to pack the packages into
text files, and then verify if the files only contain ASCII characters. With
packed packages, one can unpack and install them from the text files, too.

14.4.1 Pack

Let’s pack the esubdemo package into a text file. Assume the source package
path is esubdemo/. You should be able to pack the package with a single
pipe:
library("pkglite")

"esubdemo/" %>%
collate(file_ectd(), file_auto("inst")) %>%
pack(output = "r0pkgs.txt")

Figure 14.1: Output of pkglite::pack()

Let’s open the generated text file:

120 14 Submission package

file.edit("r0pkgs.txt")

Figure 14.2: Preview the generated text file

What happened in the pipe? The function pkglite::collate() evaluates
a specified scope of folders and files defined by a list of file specifications,
and generates a file collection object. This file collection contains the meta-
data required to properly convert the files into text which is then used by
pkglite::pack(). With this flow, you can define the scope of the R source
package to be packed for submission in a flexible yet principled way.

To pack multiple R packages, simply feed multiple file collections as inputs:
pack(
"/path/to/pkg1/" %>% collate(file_ectd()),
"/path/to/pkg2/" %>% collate(file_ectd()),

14.5 Prepare analysis programs for submission 121

output = "r0pkgs.txt"
)

The R packages are always packed in the specified order and are always
unpacked and installed in the same order. Therefore, make sure to pack the
low-level dependencies first.

For more details on how to customize file specifications and operate on file
collections, check out the vignette generate file specifications (https://merck.
github.io/pkglite/articles/filespec.html) and curate file collections (https://
merck.github.io/pkglite/articles/filecollection.html).

14.4.2 Verify

You should always verify if the text file only contains ASCII characters:
verify_ascii("r0pkgs.txt")

This should give TRUE if the file only contains ASCII characters, or FALSE
with the affected lines otherwise.

14.4.3 Unpack

One can unpack and install the package from the text file, too. For example:
unpack("r0pkgs.txt", output = "/tmp/", install = TRUE)

If the test is successful, this command can be used in the ADRG instructions
for restoring and installing the packed R package(s).

You can then proceed to move the file r0pkgs.txt to the folder
ectddemo/m5/datasets/ectddemo/analysis/adam/programs/, or specify
the output text file path above directly.

14.5 Prepare analysis programs for submission

Besides the R packages, we need to convert the R Markdown (.Rmd) files
into .txt files and saved them in the programs/ folder. You can do this with
knitr::purl():
input_path <- "esubdemo/vignettes/"
output_path <- "ectddemo/m5/datasets/ectddemo/analysis/adam/programs/"

https://merck.github.io/pkglite/articles/filespec.html
https://merck.github.io/pkglite/articles/filespec.html
https://merck.github.io/pkglite/articles/filecollection.html
https://merck.github.io/pkglite/articles/filecollection.html

122 14 Submission package

convert_rmd <- function(filename, input_dir, output_dir) {
knitr::purl(
file.path(input_dir, paste0(filename, ".Rmd")),
output = file.path(output_dir, paste0(filename, ".txt"))

)
}

"tlf-01-disposition" %>% convert_rmd(input_path, output_path)
"tlf-02-population" %>% convert_rmd(input_path, output_path)
"tlf-03-baseline" %>% convert_rmd(input_path, output_path)
"tlf-04-efficacy" %>% convert_rmd(input_path, output_path)
"tlf-05-ae-summary" %>% convert_rmd(input_path, output_path)
"tlf-06-ae-spec" %>% convert_rmd(input_path, output_path)

Optionally, you can add a header to the individual .txt files to explain the
context and help the reviewers rerun the code. For example:
Note to Reviewer
To rerun the code below, please refer to the ADRG appendix.
After the required packages are installed,
the path variable needs to be defined by using the example code below.
#
path = list(adam = "/path/to/esub/analysis/adam/datasets") # Modify to use actual location
path$outtable = path$outgraph = "." # Outputs saved to the current folder

To automate this process:
header <- readLines(textConnection("# Note to Reviewer
To rerun the code below, please refer to the ADRG appendix.
After the required packages are installed,
the path variable needs to be defined by using the example code below.
#
path = list(adam = \"/path/to/esub/analysis/adam/datasets\") # Modify to use actual location
path$outtable = path$outgraph = \".\" # Outputs saved to the current folder"))

append_header <- function(filename, output_dir, header) {
file <- file.path(output_dir, paste0(filename, ".txt"))
x <- readLines(file)
y <- c(header, "", x)
writeLines(y, con = file)
invisible(file)

}

"tlf-01-disposition" %>% append_header(output_path, header)
"tlf-02-population" %>% append_header(output_path, header)

14.6 Update ADRG 123

"tlf-03-baseline" %>% append_header(output_path, header)
"tlf-04-efficacy" %>% append_header(output_path, header)
"tlf-05-ae-summary" %>% append_header(output_path, header)
"tlf-06-ae-spec" %>% append_header(output_path, header)

14.6 Update ADRG

After we converted the R packages and R Markdown files into the appropriate
formats and verified that they can be restored and executed correctly, we need
update the ADRG to provide guidelines on how to use them.

Specifically, we need to update two sections in ADRG.

The first section is “Macro Programs”, where R and R package versions with
a snapshot date are provided. For example:
7.x Macro Programs

Submitted R programs have [specific patterns] in filenames.
All internally developed R functions are saved in the r0pkgs.txt file.
The recommended steps to unpack these R functions for analysis output
programs are described in the Appendix.

The tables below contain the software version and instructions
for executing the R analysis output programs:

Program Name Output Table Title
tlf-01-disposition.txt Table x.y.z Disposition of Patients
tlf-02-population.txt Table x.y.z Participants Accounting in Analysis Population (All Participants Randomized)
tlf-03-baseline.txt Table x.y.z Participant Baseline Characteristics (All Participants Randomized)
tlf-04-efficacy.txt Table x.y.z ANCOVA of Change from Baseline Glucose (mmol/L) at Week 24
 LOCF
 Efficacy Analysis Population
tlf-05-ae-summary.txt Table x.y.z Analysis of Adverse Event Summary (Safety Analysis Population)
tlf-06-ae-spec.txt Table x.y.z Analysis of Participants With Specific Adverse Events (Safety Analysis Population)

Open-Source R Analysis Package Package Version Analysis Package Description
pkglite 0.2.0 Prepare submission package
haven 2.4.3 Read SAS datasets
dplyr 1.0.7 Manipulate datasets
tidyr 1.1.3 Manipulate datasets
emmeans 1.6.2-1 Least-squares means estimation
r2rtf 0.3.0 Create RTF tables

124 14 Submission package

Proprietary R Analysis Package Package Version Analysis Package Description
esubdemo 0.1.0 A demo package for analysis and reporting of clinical trials

The second section (Appendix) should include step-by-step instructions to
reproduce the running environment and rerun analyses. For example:
Appendix: Instructions to Execute Analysis Program in R

1. Install R

Download and install R 4.1.1 for Windows from
https://cran.r-project.org/bin/windows/base/old/4.1.1/R-4.1.1-win.exe

2. Define working directory

Create a temporary working directory, for example, "C:\tempwork".
Copy all submitted R programs into the temporary folder.
All steps below should be executed in this working directory
represented as "." in the example R code below.

3. Specify R package repository

The R packages are based on CRAN at 2021-08-06. To install the exact
R package versions used in this project, run the code below to set
the snapshot repository.

options(repos = "https://packagemanager.posit.co/cran/2021-08-06")

4. Install open-source R packages

In the same R session, install the required packages by running the code below.

install.packages(c("pkglite", "publicpkg1", "publicpkg2"))

5. Install proprietary R packages

All internal R packages are packed in the file r0pkgs.txt. In the same R session,
restore the package structures and install them by running the code below.
Adjust the output path as needed to use a writable local directory.

pkglite::unpack("r0pkgs.txt", output = ".", install = TRUE)

6. Update path to dataset and TLFs

INPUT path: to rerun the analysis programs, define the path variable

14.7 Update ARM 125

- Path for ADaM data: path$adam

OUTPUT path: to save the analysis results, define the path variable

- Path for output TLFs: path$output

All these paths need to be defined before executing the analysis program. For example:

path = list(adam = "/path/to/esub/analysis/adam/datasets/") # Modify to use actual location
path$outtable = path$outgraph = "." # Outputs saved to the current folder

7. Execute analysis program

To reproduce the analysis results, rerun the following programs:

- tlf-01-disposition.txt
- tlf-02-population.txt
- tlf-03-baseline.txt
- tlf-04-efficacy.txt
- tlf-05-ae-summary.txt
- tlf-06-ae-spec.txt

An example ADRG following this template can be found in ectddemo
(https://github.com/elong0527/ectddemo/blob/master/m5/datasets/
ectddemo/analysis/adam/datasets/adrg.pdf).

14.7 Update ARM

The ARM (Analysis Results Metadata) should provide specific information
related to R in two sections:

• Section 2: indicate the Programming Language;
• Section 3: document the details of the R programs listed in section 3.

For example, in ARM section 2, “Analysis Results Metadata Summary”:
if (knitr::is_latex_output()) {
df4 %>% kbl(format = "latex")

}

Table Reference Table Title Programming Language Program Name (programs) Input File Name / Analysis (datasets)
[Ref. x.y.z: P001ZZZ9999: Table 1-1] Disposition of Patients R tlf-01-disposition.txt adsl.xpt
...

https://github.com/elong0527/ectddemo/blob/master/m5/datasets/ectddemo/analysis/adam/datasets/adrg.pdf
https://github.com/elong0527/ectddemo/blob/master/m5/datasets/ectddemo/analysis/adam/datasets/adrg.pdf

126 14 Submission package

if (knitr::is_html_output()) {
df4 %>%
kbl(format = "html") %>%
kable_classic(full_width = FALSE, html_font = "'Times New Roman', Times, serif", font_size = 18) %>%
column_spec(1, extra_css = "border: 1px solid #000; text-align: center;") %>%
column_spec(2, extra_css = "border: 1px solid #000; text-align: center;") %>%
column_spec(3, extra_css = "border: 1px solid #000; text-align: center;") %>%
column_spec(4, extra_css = "border: 1px solid #000; text-align: center;") %>%
column_spec(5, extra_css = "border: 1px solid #000; text-align: center;") %>%
row_spec(0, background = "#DFDFDF", bold = TRUE, extra_css = "border: 1px solid #000; text-align: center;")

}

In ARM section 3, “Analysis Results Metadata Details”:

x1 x2
Table Reference: [Ref. x.y.z: P001ZZZ9999: Table 1-1] ...
Analysis Result ...
Analysis Parameters (s) ...
Analysis Reason ...
Analysis Purpose ...
... ...
Programming Statements (R version 4.1.1), [P001ZZZ9999: programs-tlf-01-disposition]

Chapter 15

Running environment

In the previous chapter, we generated instructions to manually create the
running environments for reproducing the A&R deliverables.

In this chapter, we focus on automating the creation of the R environments
with R code to accelerate the dry run testing process, simplifying the ADRG
instructions, and making it easy to recreate different environment settings
with reproducible analysis results.

15.1 Prerequisites

cleanslate is an R package that offers a solution to create portable R envi-
ronments.

Note

As of Q4 2021, the cleanslate package used in this chapter is still under
active development and validation. This chapter gives a preview of the
planned APIs. They may change in the future.

Install cleanslate from CRAN (once available):
install.packages("cleanslate")

Or from GitHub (once available):

127

128 15 Running environment

remotes::install_github("Merck/cleanslate")

15.2 Practical considerations

The cleanslate package supports:

• Creating a project folder with project-specific context (.Rproj, .Rprofile,
.Renviron)

• Installing a specific version of R into the project folder
• Installing a specific version of Rtools into the project folder

An essential feature of cleanslate is that it does not require administrator
privileges to run R and Rtools installers. This makes it easier to deploy under
enterprise settings and avoids security and portability concerns.

As many of the A&R deliverables are currently created, validated, and de-
livered under Windows, the primary focus is Windows at the moment, while
the support for other platforms might be added in future versions.

15.3 Create canonical environments

One can create a running environment with “canonical” settings with a single
function call to use_cleanslate():
cleanslate::use_cleanslate(
"C:/temp/",
r_version = "4.1.1",
from = "https://cran.r-project.org/",
repo = "https://packagemanager.posit.co/cran/2021-08-06"

)

This will

• Create a project folder under C:/temp/ with a .Rproj file;
• Download R 4.1.1 installer from CRAN, and install it into C:/temp/R/;
• Not install Rtools (by default, rtools_version = NULL);
• Create a .Rprofile file under the project folder, set options(repos) to

use the specified repo (a Posit Public Package Manager snapshot in this
example), and give instruction to set the R binary path in RStudio IDE;

• Create a .Renviron file under the project folder and set the library path
to be the library of the project-specific R installation.

15.5 Update ADRG 129

As a principle, one should always double-click the .Rproj file to open the
project. This will ensure some sanity checks in the .Rprofile, such as
whether the R and library are located within the project folder.

15.4 Create tailored environments

To create a more customized running environment, one can use the specific
functions to tailor each aspect, for example:
library("cleanslate")

"C:/temp/" %>%
use_project() %>%
use_rprofile() %>%
use_renviron() %>%
use_r_version(version = "4.1.1") %>%
use_rtools(version = "rtools40")

The project context functions (use_project(), use_rprofile(),
use_renviron) support custom templates using brew (https://cran.r-
project.org/package=brew).

The use_r_*() functions have variations that serve as shortcuts to use
R versions defined by release lifecycles, for example, use_r_release(),
use_r_oldrel(), and use_r_devel(). Note that to ensure better repro-
ducibility, one should still use use_r_version() as the release, oldrel, and
devel versions will shift as time goes by.

The helper functions version_*() and snapshot_*() can assist you in deter-
mining specific versions of R and Rtools that are currently available, besides
generating and verifying the snapshot repo links.

15.5 Update ADRG

If you use cleanslate, remember to update the ADRG instructions for execut-
ing the analysis programs in R. Mostly, this can simplify the first three steps
on creating a project, installing a specific version of R, and configuring the
package repo location. For example:
Appendix: Instructions to Execute Analysis Program in R

1. Setup R environment

https://cran.r-project.org/package=brew
https://cran.r-project.org/package=brew

130 15 Running environment

Open the existing R, install the required packages by running the code below.

install.packages("cleanslate")

Create a temporary working directory, for example, "C:\tempwork".
Copy all submitted R programs into the temporary folder.
In the same R session, run the code below to create a project
with a portable R environment.

cleanslate::use_cleanslate(
"C:/temp/",
r_version = "4.1.1",
from = "https://cran.r-project.org/",
repo = "https://packagemanager.posit.co/cran/2021-08-06"

)

2. Open the project

Go to the working directory created above, double click the .Rproj file
to open the project in RStudio IDE. Follow the instructions to select the
project-specific R version, then restart RStudio IDE. If successful,
the R version and package repo should be printed as defined above.

3. Install open-source R packages

In the new R session, install the required packages by running the code below.

install.packages(c("pkglite", "publicpkg1", "publicpkg2"))

4. Install proprietary R packages

All internal R packages are packed in the file r0pkgs.txt. In the same R session,
restore the package structures and install them by running the code below.
Adjust the output path as needed to use a writable local directory.

pkglite::unpack("r0pkgs.txt", output = ".", install = TRUE)

5. Update path to dataset and TLFs

INPUT path: to rerun the analysis programs, define the path variable

- Path for ADaM data: path$adam

OUTPUT path: to save the analysis results, define the path variable

15.6 RStudio addin 131

- Path for output TLFs: path$output

All these paths need to be defined before executing the analysis program. For example:

path = list(adam = "/path/to/esub/analysis/adam/datasets/") # Modify to use actual location
path$outtable = path$outgraph = "." # Outputs saved to the current folder

6. Execute analysis program

To reproduce the analysis results, rerun the following programs:

- tlf-01-disposition.txt
- tlf-02-population.txt
- tlf-03-baseline.txt
- tlf-04-efficacy.txt
- tlf-05-ae-summary.txt
- tlf-06-ae-spec.txt

15.6 RStudio addin

To make it convenient to use cleanslate in experiments, one can also
use its RStudio IDE addin. After cleanslate is installed, click Addins ->
cleanslate -> Create portable R environment in RStudio IDE, or call
cleanslate:::create_env_addin() to open it.

132 15 Running environment

Figure 15.1: cleanslate RStudio addin

The addin provides a wizard-like interface to help create the environment
with the most important options, yet with less flexibility compared to the
functional API demonstrated above.

References

Brian Fitzpatrick and Ben Collins-Sussman. Team geek: a software devel-
oper’s guide to working well with others. O’Reilly Media, 2012.

Madhusudhan Ginnaram, Simiao Ye, Yalin Zhu, and Yilong Zhang. A process
to validate internal developed R package under regulatory environment.
PharmaSUG, 2021.

Robert C Martin, James Grenning, and Simon Brown. Clean architecture: a
craftsman’s guide to software structure and design. Prentice Hall, 2018.

Ben Marwick, Carl Boettiger, and Lincoln Mullen. Packaging data analytical
work reproducibly using R (and friends). The American Statistician, 72
(1):80–88, 2018.

Daniel Nüst, Dirk Eddelbuettel, Dom Bennett, Robrecht Cannoodt, Dav
Clark, Gergely Daróczi, Mark Edmondson, Colin Fay, Ellis Hughes, Lars
Kjeldgaard, Sean Lopp, Ben Marwick, Heather Nolis, Jacqueline No-
lis, Hong Ooi, Karthik Ram, Noam Ross, Lori Shepherd, Péter Sóly-
mos, Tyson Lee Swetnam, Nitesh Turaga, Charlotte Van Petegem, Jason
Williams, Craig Willis, and Nan Xiao. The Rockerverse: Packages and
applications for containerisation with R. The R Journal, 12(1):437–461,
2020.

Hadley Wickham and Jennifer Bryan. R packages. O’Reilly Media, Inc.,
2023.

Peikun Wu, Uday Preetham Palukuru, Yiwen Luo, Sarad Nepal, and Yilong
Zhang. Analysis and reporting in regulated clinical trial environment using
R. PharmaSUG, 2021.

Yujie Zhao, Nan Xiao, Keaven Anderson, and Yilong Zhang. Electronic com-
mon technical document submission with analysis using R. Clinical Trials,
20(1):89–92, 2023.

133

	Welcome
	Preface
	Folder structure
	In this book
	Philosophy
	Authors and contributors

	Part I Delivering TLFs in CSR
	Overview
	Background
	Datasets
	Tools
	tidyverse
	r2rtf

	Disposition
	Analysis population
	Helper functions
	Analysis code

	Baseline characteristics
	Efficacy table
	Analysis dataset
	Helper functions
	Summary of observed data
	Missing data imputation
	ANCOVA model
	Reporting

	Efficacy figure
	Analysis dataset
	Create Kaplan-Meier curve

	AE summary
	Specific AE
	Assemble TLFs
	Combine RTF Source Code
	Using Toggle Fields

	Part II Clinical trial project
	Overview
	Project folder
	Consistency
	Reproducibility
	R version
	R package version

	Automation
	Compliance

	Project management
	Setting up for success
	Work as a team
	Design clean code architecture
	Set capability boundaries
	Contribute to the community

	The SDLC
	Planning
	Development
	Validation
	Operation

	Part III eCTD submission
	Overview
	Submission package
	Prerequisites
	The whole game
	datasets
	programs
	Notes

	Practical considerations for R package submissions
	Source location
	Dependency locations
	R version
	Package repo version
	System environments

	Prepare R packages for submission
	Pack
	Verify
	Unpack

	Prepare analysis programs for submission
	Update ADRG
	Update ARM

	Running environment
	Prerequisites
	Practical considerations
	Create canonical environments
	Create tailored environments
	Update ADRG
	RStudio addin

	References

